高中數學教案通用模板
教案的編排以教學過程的步驟為基礎,使教師能夠清晰地了解整個教學流程,從而有利于教學的有序進行。優秀的高中數學教案通用模板應該是怎樣的?快來學習高中數學教案通用模板的撰寫技巧,跟著小編一起來參考!
高中數學教案通用模板篇1
一、教學目標設計
通過實例理解充分條件、必要條件的意義。
能夠在簡單的問題情境中判斷條件的充分性、必要性。
二、教學重點及難點
充分條件、必要條件的判斷;
充分條件、必要條件的判斷方法。
三、教學流程設計
四、教學過程設計
一、概念引入
早在戰國時期,《墨經》中就有這樣一段話有之則必然,無之則未必不然,是為大故無之則必不然,有之則未必然,是為小故。
今天,在日常生活中,常聽人說:這充分說明,沒有這個必要等,在數學中,也講充分和必要,這節課,我們就來學習教材第一章第五節充分條件與必要條件。
二、概念形成
1、 首先請同學們判斷下列命題的真假
(1)若兩三角形全等,則兩三角形的面積相等。
(2)若三角形有兩個內角相等,則這個三角形是等腰三角形。
(3)若某個整數能夠被4整除,則這個整數必是偶數。
(4) 若ab=0,則a=0。
解答:命題(2)、(3)、(4)為真。命題(4)為假;
2、請同學用推斷符號寫出上述命題。
解答:(1)兩三角形全等 兩三角形的面積相等。
(2) 三角形有兩個內角相等 三角形是等腰三角形。
(3) 某個整數能夠被4整除則這個整數必是偶數;
(4)ab=0 a=0。
3、充分條件與必要條件
繼續結合上述實例說明什么是充分條件、什么是必要條件。
若某個整數能夠被4整除則這個整數必是偶數中,我們稱某個整數能夠被4整除是這個整數必是偶數的充分條件,可以解釋為:只要某個整數能夠被4整除成立,這個整數必是偶數就一定成立;而稱這個整數必是偶數是某個整數能夠被4整除的必要條件,可以解釋成如果某個整數能夠被4整除 成立,就必須要這個整數必是偶數成立
充分條件:一般地,用、分別表示兩件事,如果這件事成立,可以推出這件事也成立,即,那么叫做的充分條件。[說明]:①可以解釋為:為了使成立,具備條件就足夠了。②可進一步解釋為:有它即行,無它也未必不行。③結合實例解釋為: x = 0 是 xy = 0 的充分條件,xy = 0不一定要 x = 0。)
必要條件:如果,那么叫做的必要條件。
[說明]:①可以解釋為若,則叫做的必要條件,是的充分條件。②無它不行,有它也不一定行③結合實例解釋為:如 xy = 0是 x = 0的必要條件,若xy0,則一定有 x若xy = 0也不一定有 x = 0。
回答上述問題(1)、(2)中的條件關系。
(1)中:兩三角形全等是兩三角形的面積相等的充分條件;兩三角形的面積相等是兩三角形全等的必要條件。
(2)中:三角形有兩個內角相等是三角形是等腰三角形的充分條件;三角形是等腰三角形是三角形有兩個內角相等的必要條件。
4、拓廣引申
把命題:若某個整數能夠被4整除,則這個整數必是偶數中的條件與結論分別記作與,那么,原命題與逆命題的真假同與之間有什么關系呢?
關系可分為四類:
(1)充分不必要條件,即,而
(2)必要不充分條件,即,而
(3)既充分又必要條件,即,又有
(4)既不充分也不必要條件,即,又有。
三、典型例題(概念運用)
例1:(1)已知四邊形ABCD是凸四邊形,那么AC=BD是四邊形ABCD是矩形的什么條件?為什么?(課本例題p22例4)
(2) 是 的什么條件。
(3)a+b是1,b什么條件。
解:(1)AC=BD是四邊形ABCD是矩形的必要不充分條件。
(2)充分不必要條件。
(3)必要不充分條件。
[說明]①如果把命題條件與結論分別記作與,則既要對進行判斷,又要對進行判斷。②要否定條件的充分性、必要性,則只需舉一反例即可。
例2:判斷下列電路圖中p與q的充要關系。其中p:開關閉合;q:
燈亮。(補充例題)
[說明]①圖中含有兩個開關時,p表示其中一個閉合,另一個情況不確定。②加強學科之間的橫向溝通,通過圖示,深化概念認識。
例3、探討下列生活中名言名句的充要關系。(補充例題)
(1)頭發長,見識短。 (2)驕兵必敗。
(3)有志者事竟成。 (4)春回大地,萬物復蘇。
(5)不入虎穴、焉得虎子 (6)四肢發達,頭腦簡單
[說明]通過本例,充分調動學生生活經驗,使得抽象概念形象化。從而激發學生學習熱情。
四、鞏固練習
1、課本P/22練習1。5(1)
2:填表(補充)
p q p是q的
什么條件 q是p的
什么條件
兩個角相等 兩個角是對頂角
內錯角相等 兩直線平行
四邊形對角線相等 四邊形是平行邊形
a=b ac=bc
[說明]通過練習,及時鞏固所學新知,反饋教學效果。
五、課堂小結
1、本節課主要研究的內容:
推斷符號,
充分條件的意義 命題充分性、必要性的判斷。
必要條件的意義
2、 充分條件、必要條件判別步驟:
① 認清條件和結論。
② 考察p q和q p的真假。
3、充分條件、必要條件判別技巧:
① 可先簡化命題。
② 否定一個命題只要舉出一個反例即可。
③ 將命題轉化為等價的逆否命題后再判斷。
六、課后作業
書面作業:課本P/24習題1。51,2,3。
五、教學設計說明
1、充分條件、必要條件以及下節課中充要條件與集合的概念一樣涉及到數學的各個分支,用推出關系的形式給出它的定義,對高一學生只要求知道它的意義,并能判斷簡單的充分條件與必要條件。
2、由于充要條件與命題的真假、命題的條件與結論的相互關系緊密相關,為此,教學時可以從判斷命題的真假入手,來分析命題的條件對于結論來說,是否充分,從而引入充分條件的概念,進而引入必要條件的概念。
3、教材中對充分條件、必要條件的定義沒有作過多的解釋說明,為了讓學生能理解定義的合理性,在教學過程中,教師可以從一些熟悉的命題的條件與結論之間的關系來認識充分條件的概念,從互為逆否命題的等價性來引出必要條件的概念。
4、由于這節課概念性、理論性較強,一般的教學使學生感到枯燥乏味,為此,激發學生的學習興趣是關鍵。教學中始終要注意以學生為主,結合相關學科及學生生活經驗讓學生在自我思考、相互交流中去給概念下定義,去體會概念的本質屬性。
高中數學教案通用模板篇2
教學內容背景材料:
義務教育課程標準實驗教科書(人教版)二年級上冊第八單元的排列與組合
教學目標:
1、通過觀察、猜測、操作等活動,找出最簡單的事物的排列數和組合數。
2、經歷探索簡單事物排列與組合規律的過程。
3、培養學生有序地全面地思考問題的意識。
4、感受數學與生活的緊密聯系,培養學生學習數學的興趣和用數學方法解決問題的意識。
教學重點:
經歷探索簡單事物排列與組合規律的過程。
教學難點:
初步理解簡單事物排列與組合的不同。
教具準備:
乒乓球、衣服圖片、紙箱、每組三張數字卡片、吹塑紙數字卡片。
一、情境導入,展開教學
今天,王老師要帶大家去“數學廣角”里做游戲,可是,我把游戲要用的材料都放在這個密碼包里。你們想解開密碼取出游戲材料嗎?(想)我給大家提供解碼的3個信息。
1.好,接下來老師提供解碼的第一個信息:密碼是一個兩位數。(學生在兩位數里猜)(你們猜的對不對呢?請聽第二個解碼信息)
2.下面,提供解碼的第二個信息:密碼是由2和7組成的(學生說出27和72)。能說說看你是怎么想的嗎?
3.下面,提供解碼的第三個信息:剛才說了密碼可能是27也可能是72。其實這個密碼和老師的年齡有關。哪個才是真正的密碼是?(學生說出是27)到底是不是27呢?請看(教師出示密碼)。真的是27,恭喜大家解碼成功!
二、多種活動,體驗新知
1、感知排列
師:請小朋友先到“數字宮”做個排數字游戲,好嗎?這有兩張數字卡片(1、2)(老師從密碼包里拿出),你能擺出幾個兩位數?(用數字卡擺一擺)
生:我擺了兩個不同的數字12和21。(教師板書)
師:同學們想得真好。我又請來了一位好朋友數字3,現在有三個數字1、2、3,讓大家寫兩位數,你們不會了吧?(會)別吹牛?。ㄕ娴臅┖茫旅娲蠹曳纸M合作,組長記錄??纯茨銈兡軌驅懗鰩讉€不同的兩位數,注意不要重復,如果你覺得直接寫有困難的話可以借助手中的數字卡片擺一擺。好,開始。
學生活動教師巡視并參與學生活動。(學生所寫的個數可能不一樣,有多有少,找幾份重復的或個數少的展示。)哪組同學來給大家匯報一下。(教師板書結果。)有沒有需要補充的呀?
2、探討排列方法。
有的小組擺出4個不同的兩位數,有的小組擺出6個不同的兩位數,有什么好的方法能保證既不重復,也不漏掉數呢?還請大家分組討論??匆豢茨慕M同學的方法最好?。ㄐ〗M討論,分組交流,學生總結方法。)哪組同學來給大家匯報一下你們的想法?
方法1:我擺出12,然后再顛倒就是21,再擺23,顛倒后就是32,再擺13,顛倒后就是31,一共可以擺出6個兩位數。
方法2:我先把數字1放在十位上,然后把數字2和3分別放在個位組成12和13;我再把數字2放在十位上,然后把數字1和3分別放在個位組成21和23;我再把數字3放在十位上,然后把數字1和2分別放在個位上組成31和32,一共擺出了6個兩位數。3、老師和學生共同評議方法:讓學生選擇自己喜歡的方法再擺一擺,學生試著總結。(如果學生說不出方法2,老師就直接告訴學生)
3、感知組合。
①師:你們真是一群善于動腦的好孩子。來,咱們握握手,祝賀祝賀!加油!123
②提出問題:從大家剛才握手,老師想出了一個數學問題:三個小朋友,每兩個人只能握一次手,一共要握幾次手呢?想一想!
生1:6次!
生2:4次!
師:到底是幾次呢?請小組長作裁判,小組內的三個同學,試一試,到底是幾次?
③學生匯報表演。小組長指揮說明。哪組同學愿意給大家表演一下?他們握手,咱們一起來數吧!教師引導學生一起數握手的次數。(注意握過小朋友一邊休息)
④師問:A和B握手了嗎?B和A握手了嗎?這算一次還是兩次呀?
⑤小結:看來,兩個人相互握手,只能算一次,和順序無關。剛才排數,交換數的位置,就變成另一個數了,這和順序有關。
三、反饋練習,加深理解
下面大家看這是什么呀?(老師從密碼包里拿出一個乒乓球)(乒乓球)這個是我昨天專門買來的。定價5角。當時我的口袋里有1張5角的、2張2角,還有5個1角的硬幣。(師出示所述人民幣)大家想一想我有多少種方法付給老板錢呢?(老師引導學生有序的說出付錢的四種方法)
有了乒乓球,老師就可以教大家打乒乓球了。不過我要先考考大家。每兩個人進行一場比賽,三個人要比幾場?(指名答。)好的,大家真能干。下課老師就教你們的乒乓球好嗎?(好)。
今天是幾月幾日?(12月1日)哦!快到元旦了。小明準備在數學廣角舉辦的元旦晚會上露一手。來一個時裝表演。他準備了4件衣服(教師貼出2件上衣和2件褲子),請你幫他設計一下,有幾種穿法?誰來說一說?(指名答出四種穿法并演示)
大家感覺一下只有4種穿法,是不是有點少了呀?(是)小明也和大家想到一塊去了。于是他又用自己的零花錢買了一條黑褲子(貼出)。大家再想一想現在一共有多少種穿法了呀?(6種)除了剛才的4種,還有哪2種,誰來說一說?(生答完后,老師再引導學生有序地回憶6種穿法)同學們真聰明。我在這里代表小明向大家說一聲:謝謝了!(沒關系)。對了。到時候我們一定要去看小明的精彩表演!好不好?(好)
四、游戲活動,拓展應用
1、老師看大家學得這么開心,我們來做個抽獎游戲,想參加嗎?每個小朋友都有中獎的機會哦。
①教師出示4個號球:老師這這里有四個號球:2、5、7、8。
②什么樣的號碼能中獎呢?我給你們透露點信息:中獎號碼就是從這4個數中選出的兩個數組成的兩位數。猜猜,什么號碼可能中獎?這個號碼可能中獎。再猜?你這個號碼也可能中獎??磥?,可能中獎的號碼有很多個。有什么好辦法肯定能中獎?(把你認為能中獎的號碼都寫出來吧)(把用這四個數能組成的所有兩位數都寫出來,教師巡視,有的孩子寫出來8個兩位數,她還在繼續寫,看來不止8個。你寫得越多你中獎的可能就越大)
③寫好了嗎?大家推舉一個人來摸獎吧。老師來當公證員行不行?學生先摸出一個球。中獎號碼的最前面一個數出來了,是2,那中獎號碼可能是?25、27、28。再摸一個球。中獎號碼是?
④你中獎了嗎?把你寫出的這個數圈出來。同桌互相看看,如果你同位中獎了,請你給他畫一面小紅旗。
⑤出示所有結果:孩子們,你剛才一共寫出了多少個兩位數?用2、5、7、8能組成的兩位數究竟有多少個呢?咱們用剛才先固定最前面一位數的辦法把這些數都排出來吧!老師寫,你們說,好嗎?
2、老師給今天這節課表現最好的三位同學一張合影,請同學們想一想,三個人站成一行,一共有多少種不同的排法?(指名答,教師總結)
這種排法剛才有沒有呀?我也糊涂了。怎樣才能搞清楚呢?對了,我們也可以用剛才先固定最前面一位數的方法來排一排。(教師引導學生有順序的排一排)這樣有順序的排一下,我們都清楚了??磥砦覀円院?,不管在生活和學習中,做什么事情,想什么問題都要有順序的思考,這樣才能考慮全面。其實生活中有許多有趣的數學問題,不管有多難,只要大家肯動腦筋,就一定能解決。對不對?(對)
五、全課總結,升華情感
在數學廣角中還有許多地方等著大家去游玩,由于時間關系,今天我們大家就玩到這里。今天你這節課最高興的是什么事?
六、板書設計
排列組合
121232578
1221122331252728
213213525758
727578
828587
高中數學教案通用模板篇3
重點難點教學:
1.正確理解映射的概念;
2.函數相等的兩個條件;
3.求函數的定義域和值域。
一.教學過程:
1. 使學生熟練掌握函數的概念和映射的定義;
2. 使學生能夠根據已知條件求出函數的定義域和值域; 3. 使學生掌握函數的三種表示方法。
二.教學內容:
1.函數的定義
設A、B是兩個非空的數集,如果按照某種確定的對應關系f,使對于集合A中的任意一個數x,在集合B中都有確定的數()fx和它對應,那么稱:fAB?為從集合A到集合B的一個函數(function),記作:
(),yfA
其中,x叫自變量,x的取值范圍A叫作定義域(domain),與x的值對應的y值叫函數值,函數值的集合{()|}fA?叫值域(range)。顯然,值域是集合B的子集。
注意:
① “y=f(x)”是函數符號,可以用任意的字母表示,如“y=g(x)”;
②函數符號“y=f(x)”中的f(x)表示與x對應的函數值,一個數,而不是f乘x.
2.構成函數的三要素 定義域、對應關系和值域。
3、映射的定義
設A、B是兩個非空的集合,如果按某一個確定的對應關系f,使對于集合A中的任意
一個元素x,在集合B中都有確定的元素y與之對應,那么就稱對應f:A→B為從 集合A到集合B的一個映射。
4. 區間及寫法:
設a、b是兩個實數,且a
(1) 滿足不等式axb??的實數x的集合叫做閉區間,表示為[a,b];
(2) 滿足不等式axb??的實數x的集合叫做開區間,表示為(a,b);
5.函數的三種表示方法 ①解析法 ②列表法 ③圖像法
高中數學教案通用模板篇4
教學目標:
1、在新學期能夠以積極的學習態度投入到學習中去,并用高昂的興趣參與學習。
2、熟悉新學期音樂課的要求,并能夠有意識的遵守,以良好的學習習慣規范自己在課堂中的表現。
教學重點:
養成良好的學習習慣
教學過程:
一.師生互相問好,拉近彼此的距離。
二.師生共同演繹節目,學生表演,老師表演,增進彼此感情,與孩子打成一片。
三.講述新學期音樂課要求:
1、按時按順序進入教室,不遲到,不早退。
2、進入教室不得高聲喧嘩打鬧,保持安靜狀態。
3、認真保持教室衛生,不亂扔果皮紙屑,不隨地吐痰。
4、課堂上發言積極有序,有禮有節,爭做文明小學生。
5、做到愛護公共物品,輕拿輕放,損壞照價賠償。
6、上課保持良好的狀態,以積極的態度認真學習。
四、習慣養成訓練,聽音樂做出相關要求:
1、起立、坐下
2、安靜
3、師生問好
4、請坐好
5、同桌面對
五、分組選撥,并對小組長提出要求
1、四人一小組
2、講述課堂要求,小組合作學習,評價真實客觀,學會欣賞別人;正當優秀小組,小組團結合作,富有創新;組長根據組員的表現,從紀律、學習習慣、上課表現上進行評價計分,獲得3分就可獲得一張綠卡。
小結:
希望第一節課能讓師生互相留下印象,更好的進行今后的音樂教學,把音樂課上的更加的有聲有色。
高中數學教案通用模板篇5
教學目標:
1、進一步熟練掌握比較法證明不等式;
2、了解作商比較法證明不等式;
3、提高學生解題時應變能力.
教學重點:
比較法的應用
教學難點:
常見解題技巧
教學方法啟發引導式
教學活動
(一)導入新課
(教師活動)教師打出字幕(復習提問),請三位同學回答問題,教師點評.
(學生活動)思考問題,回答.
[字幕]
1、比較法證明不等式的步驟是怎樣的?
2、比較法證明不等式的步驟中,依據、手段、目的各是什么?
3、用比較法證明不等式的步驟中,最關鍵的是哪一步?學了哪些常用的變形方法?對式子的變形還有其它方法嗎?
[點評]用比較法證明不等式步驟中,關鍵是對差式的變形.在我們所學的知識中,對式子變形的常用方法除了配方、通分,還有因式分解.這節課我們將繼續學習比較法證明不等式,積累對差式變形的常用方法和比較法思想的應用.(板書課題)
設計意圖:復習鞏固已學知識,銜接新知識,引入本節課學習的內容.
(二)新課講授
【嘗試探索,建立新知】
(教師活動)提出問題,引導學生研究解決問題,并點評.
(學生活動)嘗試解決問題.
[問題]
1、化簡
2、比較與()的大?。?/p>
(學生解答問題)
[點評]
①問題1,我們采用了因式分解的方法進行簡化.
②通過學習比較法證明不等式,我們不難發現,比較法的思想方法還可用來比較兩個式子的大?。?/p>
設計意圖:啟發學生研究問題,建立新知,形成新的知識體系.
【例題示范,學會應用】
(教師活動)教師打出字幕(例題),引導、啟發學生研究問題,井點評解題過程.
(學生活動)分析,研究問題.
[字幕]例題3已知a,b是正數,且,求證
[分析]依題目特點,作差后重新組項,采用因式分解來變形.
證明:(見課本)
[點評]因式分解也是對差式變形的一種常用方法.此例將差式變形為幾個因式的積的形式,在確定符號中,表達過程較復雜,如何書寫證明過程,例3給出了一個好的示范.
[點評]解這道題在判斷符號時用了分類討論,分類討論是重要的數學思想方法.要理解為什么分類,怎樣分類.分類時要不重不漏.
[字幕]例5甲、乙兩人同時同地沿同一條路線走到同一地點.甲有一半時間以速度m行走,另一半時間以速度n行走;有一半路程乙以速度m行走,另一半路程以速度n行走,如果,問甲、乙兩人誰先到達指定地點.
[分析]設從出發地點至指定地點的路程為,甲、乙兩人走完這段路程用的時間分別為,要回答題目中的問題,只要比較、的大小就可以了.
解:(見課本)
[點評]此題是一個實際問題,學習了如何利用比較法證明不等式的思想方法解決有關實際問題.要培養自己學數學,用數學的良好品質.
設計意圖:鞏固比較法證明不等式的方法,掌握因式分解的變形方法和分類討論確定符號的方法.培養學生應用知識解決實際問題的能力.
【課堂練習】
(教師活動)教師打出字幕練習,要求學生獨立思考,完成練習;請甲、乙兩位學生板演;巡視學生的解題情況,對正確的給予肯定,對偏差及時糾正;點評練習中存在的問題.
(學生活動)在筆記本上完成練習,甲、乙兩位同學板演.
[字幕]練習:
1、設,比較與的大小.
2、已知,求證
設計意圖:掌握比較法證明不等式及思想方法的應用.靈活掌握因式分解法對差式的變形和分類討論確定符號.反饋信息,調節課堂教學.
【分析歸納、小結解法】
(教師活動)分析歸納例題的解題過程,小結對差式變形、確定符號的常用方法和利用不等式解決實際問題的解題步驟.
(學生活動)與教師一道小結,并記錄在筆記本上.
1、比較法不僅是證明不等式的一種基本、重要的方法,也是比較兩個式子大小的一種重要方法.
2、對差式變形的常用方法有:配方法,通分法,因式分解法等.
3、會用分類討論的方法確定差式的符號.
4、利用不等式解決實際問題的解題步驟:
①類比列方程解應用題的步驟.
②分析題意,設未知數,找出數量關系(函數關系,相等關系或不等關系),
③列出函數關系、等式或不等式,
④求解,作答.
設計意圖:培養學生分析歸納問題的能力,掌握用比較法證明不等式的知識體系.
(三)小結
(教師活動)教師小結本節課所學的知識及數學思想與方法.
(學生活動)與教師一道小結,并記錄筆記.
本節課學習了對差式變形的一種常用方法因式分解法;對符號確定的分類討論法;應用比較法的思想解決實際問題.
通過學習比較法證明不等式,要明確比較法證明不等式的理論依據,理解轉化,使問題簡化是比較法證明不等式中所蘊含的重要數學思想,掌握求差后對差式變形以及判斷符號的重要方法,并在以后的學習中繼續積累方法,培養用數學知識解決實際問題的`能力.
設計意圖:培養學生對所學的知識進行概括歸納的能力,鞏固所學的知識,領會化歸、類比、分類討論的重要數學思想方法.
(四)布置作業
1、課本作業:P177、8。
2、思考題:已知,求證
3、研究性題:對于同樣的距離,船在流水中來回行駛一次的時間和船在靜水中來回行駛一次的時間是否相等?(假設船在流水中的速度和部在靜水中的速度保持不變)
設計意圖:思考題讓學生了解商值比較法,掌握分類討論的思想.研究性題是使學生理論聯系實際,用數學解決實際問題,提高應用數學的能力.
(五)課后點評
1、教學評價、反饋調節措施的構想:本節課采用啟發引導,講練結合的授課方式,發揮教師主導作用,體現學生主體地位,通過啟發誘導學生深入思考問題,解決問題,反饋學習信息,調節教學活動.
2、教學措施的設計:由于對差式變形,確定符號是掌握比較法證明不等式的關鍵,本節課在上節課的基礎上繼續學習差式變形的方法和符號的確定,例3和例4分別使學生掌握因式分解變形和分類討論確定符號,例5使學生對所學的知識會應用.例題設計目的在于突出重點,突破難點,學會應用
高中數學教案通用模板篇6
一、教學目標
1.知識與能力目標
①使學生理解數列極限的概念和描述性定義。
②使學生會判斷一些簡單數列的極限,了解數列極限的“e-N"定義,能利用逐步分析的方法證明一些數列的極限。
③通過觀察運動和變化的過程,歸納總結數列與其極限的特定關系,提高學生的數學概括能力和抽象思維能力。
2.過程與方法目標
培養學生的極限的思想方法和獨立學習的能力。
3.情感、態度、價值觀目標
使學生初步認識有限與無限、近似與精確、量變與質變的辯證關系,培養學生的辯證唯物主義觀點。
二、教學重點和難點
教學重點:數列極限的概念和定義。
教學難點:數列極限的“ε―N”定義的理解。
三、教學對象分析
這節課是數列極限的第一節課,足學生學習極限的入門課,對于學生來說是一個全新的內容,學生的思維正處于由經驗型抽象思維向理論型抽象思維過渡階段,在《立體幾何》內容求球的表面積和體積時對極限思想已有接觸,而學生在以往的數學學習中主要接觸的是關于“有限”的問題,很少涉及“無限”的問題。極限這一抽象概念能夠使他們做基于直觀的理解,并引導他們作出描述性定義“當n無限增大時,數列{an}中的項an無限趨近于常數A,也就是an與A的差的絕對值無限趨近于0”,并能用這個定義判斷一些簡單數列的極限。但要使他們在一節課內掌握“ε-N”語言求極限要求過高。因此不宜講得太難,能夠通過具體的幾個例子,歸納研究一些簡單的數列的極限。使學生理解極限的基本概念,認識什么叫做數列的極限以及數列極限的定義即可。
四、教學策略及教法設計
本課是采用啟發式講授教學法,通過多媒體課件演示及學生討論的方法進行教學。通過學生比較熟悉的一個實際問題入手,引起學生的注意,激發學生的學習興趣。然后通過具體的兩個比較簡單的數列,運用多媒體課件演示向學生展示了數列中的各項隨著項數的增大,無限地趨向于某個常數的過程,讓學生在觀察的基礎上討論總結出這兩個數列的特征,從而得出數列極限的一個描述性定義。再在教師的引導下分析數列極限的各種不同情況。從而對數列極限有了直觀上的認識,接著讓學生根據數列中各項的情況判斷一些簡單的數列的極限。從而達到深化定義的效果。最后進行練習鞏固,通過這樣的一個完整的教學過程,由觀察到分析、由定量到定性,由直觀到抽象,并借助于多媒體課件的演示,使得學生逐步地了解極限這個新的概念,為下節課的極限的運算及應用做準備,為以后學習高等數學知識打下基礎。在整個教學過程中注意突出重點,突破難點,達到教學目標的要求。
五、教學過程
1.創設情境
課件展示創設情境動畫。
今天我們將要學習一個很重要的新的知識。
情境
1、我國古代數學家劉徽于公元263年創立“割圓術”,“割之彌細,所失彌少。割之又割,以至不可割,則與圓周合體而無所失矣”。
情境
2、我國古代哲學家莊周所著的《莊子?天下篇》引用過一句話:一尺之棰,日取其半,萬世不竭。也就是說拿一根木棒,將它切成一半,拿其中一半來再切成一半,得到四分之一,再切成一半,就得到了八分之???如此下去,無限次地切,每次都切一半,問是否會切完?
大家都知道,這是不可能切完的,但是每次切了以后,木棒都比原來的少了一半,也就是說木棒的長度越來越短,但永遠不會變成零。從而引出極限的概念。
2.定義探究
展示定義探索(一)動畫演示。
問題1:請觀察以下無窮數列,當n無限增大時,a,I的變化趨勢有什么特點?
(1)1/2,2/3,3/4,?n/n-1(2)0.9,0.99,0.999,0.9999,1-1/10n??
問題2:觀察課件演示,請分析以上兩個數列隨項數n的增大項有那些特點?
師生一起歸納總結出以下結論:數列(1)項數n無限增大時,項無限趨近于1;數列(2)項數n無限增大時,項無限趨近于1。
那么就把1叫數列(1)的極限,1叫數列(2)的極限。這兩個數列只是形式不同,它們都是隨項數n的無限增大,項無限趨近于某一確定常數,這個常數叫做這個數列的極限。
那么,什么叫數列的極限呢?對于無窮數列an,如果當n無限增大時,an無限趨向于某一個常數A,則稱A是數列an的極限。
提出問題3:怎樣用數學語言來定量描述呢?怎樣用數學語言來描述上述數列的變化趨勢?
展示定義探索(二)動畫演示,師生共同總結發現在數軸上兩點間距離越小,項與1越趨近,因此可以借助兩點間距離無限小的方式來描述項無限趨近常數。無論預先指定多么小的正數e,如取e=O-1,總能在數列中找到一項am,使得an項后面的所有項與1的差的絕對值都小于ε,若取£=0。0001,則第6項后面的所有項與1的差的絕對值都小于ε,即1是數列(1)的極限。最后,師生共同總結出數列的極限定義中應包含哪量(用這些量來描述數列1的極限)。
數列的極限為:對于任意的ε>0,如果總存在自然數N,當n>N時,不等式|an-A|n的極限。
定義探索動畫(一):
課件可以實現任意輸入一個n值,可以計算出相應的數列第n項的值,并且動畫演示數列的變化過程。如圖1所示是課件運行時的一個畫面。
定義探索動畫(二)課件可以實現任意輸入一個n值,可以計算出相應的數列第n項的值和Ian一1I的值,并且動畫演示出第an項和1之間的距離。如圖2所示是課件運行時的一個畫面。
3.知識應用
這里舉了3道例題,與學生一塊思考,一起分析作答。
例1.已知數列:
1,-1/2,1/3,-1/4,1/5??,(-1)n+11/n,??
(1)計算an-0(2)第幾項后面的所有項與0的差的絕對值都小于0.017都小于任意指定的正數。
(3)確定這個數列的極限。
例2.已知數列:
已知數列:3/2,9/4,15/8??,2+(-1/2)n,??。
猜測這個數列有無極限,如果有,應該是什么數?并求出從第幾項開始,各項與這個極限的差都小于0.1,從第幾項開始,各項與這個極限的差都小于0.017
例3.求常數數列一7,一7,一7,一7,??的極限。
5.知識小結
這節課我們研究了數列極限的概念,對數列極限有了初步的認識。數列極限研究的是無限變化的趨勢,而通過對數列極限定義的探討,我們看到這一過程又是通過有限來把握的,有限與無限、近似與精確、量變與質變之間的辯證關系在這里得到了充分的體現。
課后練習:
(1)判斷下列數列是否有極限,如果有的話請求出它的極限值。①an=4n+l/n;②an=4-(1/3)m;③an=(-1)n/3n;④aan=-2;⑤an=n;⑥an=(-1)n。
(2)課本練習1,2。
6.探究性問題
設計研究性學習的思考題。
提出問題:
芝諾悖論:阿基里斯是《荷馬史詩》中的善跑英雄。奔跑中的阿基里斯永遠也無法超過在他前面慢慢爬行的烏龜,因為當阿基里斯到達烏龜的起跑點時,烏龜已經走在前面一小段路了,阿基里斯又必須趕過這一小段路,而烏龜又向前走了。這樣,阿基里斯可無限接近它,但不能追到它。假定阿基里斯跑步的速度是烏龜速度的10倍,阿基里斯與烏龜賽跑的路程是1公里。如果讓烏龜先跑0.1公里,當阿基里斯追到O.1公里的地方,烏龜又向前跑了0.01公里。當阿基里斯追到0.01公里的地方,烏龜又向前跑了0.001公里??這樣一直追下去,阿基里斯能追上烏龜嗎?
這里是研究性學習內容,以學生感興趣的悖論作為課后作業,鞏固本節所學內容,進一步提高了學生學習數列的極限的興趣。同時也為學生創設了課下交流與討論的情境,逐步培養學生相互合作、交流和討論的習慣,使學生感受到了數學來源于生活,又服務于生活的實質,逐步養成用數學的知識去解決生活中遇到的實際問題的習慣。
高中數學教案通用模板篇7
一、教材的地位和作用
本節課是 “空間幾何體的三視圖和直觀圖”的第一課時,主要內容是投影和三視圖,這部分知識是立體幾何的基礎之一,一方面它是對上一節空間幾何體結構特征的再一次強化,畫出空間幾何體的三視圖并能將三視圖還原為直觀圖,是建立空間概念的基礎和訓練學生幾何直觀能力的有效手段。另外,三視圖部分也是新課程高考的重要內容之一,常常結合給出的三視圖求給定幾何體的表面積或體積設置在選擇或填空中。同時,三視圖在工程建設、機械制造中有著廣泛應用,同時也為學生進入高一層學府學習有很大的幫助。所以在人們的日常生活中有著重要意義。
二、教學目標
(1) 知識與技能:能畫出簡單空間圖形(長方體,球,圓柱,圓錐,棱柱等的簡易組合)的三視圖,能識別上述三視圖表示的立體模型,從而進一步熟悉簡單幾何體的結構特征。
(2)過程與方法:通過直觀感知,操作確認,提高學生的空間想象能力、幾何直觀能力,培養學生的應用意識。
(3)情感、態度與價值觀:讓感受數學就在身邊,提高學生學習立體幾何的興趣,培養學生相互交流、相互合作的精神。
三、設計思路
本節課的主要任務是引導學生完成由立體圖形到三視圖,再由三視圖想象立體圖形的復雜過程。直觀感知操作確認是新課程幾何課堂的一個突出特點,也是這節課的設計思路。通過大量的多媒體直觀,實物直觀使學生獲得了對三視圖的感性認識,通過學生的觀察思考,動手實踐,操作練習,實現認知從感性認識上升為理性認識。培養學生的空間想象能力,幾何直觀能力為學習立體幾何打下基礎。
教學的重點、難點
(一)重點:畫出空間幾何體及簡單組合體的三視圖,體會在作三視圖時應遵循的“長對正、高平齊、寬相等”的原則。
(二)難點:識別三視圖所表示的空間幾何體,即:將三視圖還原為直觀圖。
四、學生現實分析
本節首先簡單介紹了中心投影和平行投影,中心投影和平行投影是日常生活中最常見的兩種投影形式,學生具有這方面的直接經驗和基礎。投影和三視圖雖為高中新增內容,但學
生在初中有一定基礎,在七年級上冊 “從不同方向看”的基礎上給出了三視圖的概念。到了九年級下冊則是在介紹了投影后,用投影的方法給出了三視圖的概念,這一概念已基本接近了高中的三視圖定義,只是在名字上略有差異。初中叫做主視圖、左視圖、俯視圖。進入高中后特別是再次學習和認識了柱、錐、臺等幾何體的概念后,學生在空間想象能力方面有了一定的提高,所以,給出了正視圖、側視圖、俯視圖的概念。這些概念的變化也說明了學生年齡特點和思維差異
五、教學方法
(1)教學方法及教學手段
針對本節課知識是由抽象到具體再到抽象、空間思維難度較大的特點,我采用的教法是直觀教學法、啟導發現法。
在教學中,通過創設問題情境,充分調動學生學習的積極性和主動性,并引導啟發學生動眼、動腦、動手.同時采用多媒體的教學手段,加強直觀性和啟發性,解決了教師“口說無憑”的尷尬境地,增大了課堂容量,提高了課堂效率。
(2)學法指導
力爭在新課程要求的大背景下組織教學,為學生創設良好的問題情境,留給學生充分的思考空間,在學生的辯證和討論前提下,發揮教師的概括和引領的作用。
六、教學過程
(一)創設情境,引出課題
通過攝影作品及汽車設計圖紙引出問題
1.照相、繪畫之所以有空間視覺效果,主要處決于線條、明暗和色彩,其中對線條畫法的基本原理是一個幾何問題,我們需要學習這方面的知識。
2.在建筑、機械等工程中,需要用平面圖形反映空間幾何體的形狀和大小,在作圖技術上這也是一個幾何問題,你想知道這方面的基礎知識嗎?
設計意圖:通過攝影作品及汽車設計圖紙的展示引出問題1,2,從貼近生活的實例入手,給學生以視覺沖擊,引領學生進入本節課的內容。
引出課題:投影與三視圖
知識探究(一):中心投影與平行投影
光是直線傳播的,一個不透明物體在光的照射下,在物體后面的屏幕上會留下這個物體的影子,這種現象叫做投影。其中的光線叫做投影線,留下物體影子的屏幕叫做投影面。
思考1:不同的光源發出的光線是有差異的,其中燈泡發出的光線與手電筒發出的光線有什么
不同?
思考2:我們把光由一點向外散射形成的投影叫做中心投影,把在一束平行光線照射下形成的投影叫做平行投影,那么用燈泡照射物體和用手電筒照射物體形成的投影分別是哪種投影?
思考3:用燈泡照射一個與投影面平行的不透明物體,在投影面上形成的影子與原物體的形狀、大小有什么關系?當物體與燈泡的距離發生變化時,影子的大小會有什么不同?
思考4:用手電筒照射一個與投影面平行的不透明物體,在投影面上形成的影子與原物體的形狀、大小有什么關系?當物體與手電筒的距離發生變化時,影子的大小會有變化嗎?
思考5:在平行投影中,投影線正對著投影面時叫做正投影,否則叫做斜投影.一個與投影面平行的平面圖形,在正投影和斜投影下的形狀、大小是否發生變化?
思考6:一個與投影面不平行的平面圖形,在正投影和斜投影下的形狀、大小是否發生變化? 師生活動:學生思考,討論,教師歸納總結。
設計意圖:講解投影,投影線,投影面,讓學生了解投影式如何形成的。通過六個思考層層深入,學生在思考討論的過程中總結出投影的分類及每種投影的特點。
知識探究(二):柱、錐、臺、球的三視圖
把一個空間幾何體投影到一個平面上,可以獲得一個平面圖形。但只有一個平面圖形難以把握幾何體的全貌,因此我們需要從多個角度進行投影,這樣就能較好地把握幾何體的形狀和大小,通常選擇三種正投影,即正面、側面和上面。
從不同的角度看建筑
問題1:要很好地描繪這幢房子,需要從哪些方向去看?
問題2:如果要建造房子,你是工程師,需要給施工員提供哪幾種圖紙?
設計意圖:通過觀察大樓的圖片,提出問題1,2,這種設計更易于讓學生接受,說明數學與生活密不可分。
給出三視圖的含義:
(1)光線從幾何體的前面向后面正投影得到的投影圖,叫做幾何體的正視圖;
(2)光線從幾何體的左面向右面正投影得到的投影圖,叫做幾何體的側視圖;
(3)光線從幾何體的上面向下面正投影得到的投影圖,叫做幾何體的俯視圖;
(4)幾何體的正視圖、側視圖、俯視圖統稱為幾何體的三視圖。
思考1 :正視圖、側視圖、俯視圖分別是從幾何體的哪三個角度觀察得到的幾何體的正投影圖?它們都是平面圖形還是空間圖形?
思考2 :如圖,設長方體的長、寬、高分別為a、b、c ,那么其三視圖分別是什么?
一個幾何體的正視圖和側視圖的高度一樣,俯視圖和正視圖的的長度一樣,側視圖和俯視圖的寬度一樣。
思考3 :圓柱、圓錐、圓臺的三視圖分別是什么?
思考4 :一般地,一個幾何體的正視圖、側視圖和俯視圖的長度、寬度和高度有什么關系? 師生活動:分小組討論,動手操作來完成思考題。
設計意圖:通過多媒體的動態演示,對學生的結論進行驗證,大概花15分鐘的時間來完成這部分的教學。學生自主歸納總結將本節課的重點化解。
長對正,高平齊,寬相等
高中數學教案通用模板篇8
一、教學目標
1.掌握任意角的正弦、余弦、正切函數的定義(包括定義域、正負符號判斷);了解任意角的余切、正割、余割函數的定義.
2.經歷從銳角三角函數定義過度到任意角三角函數定義的推廣過程,體驗三角函數概念的產生、發展過程.領悟直角坐標系的工具功能,豐富數形結合的經驗.
3.培養學生通過現象看本質的唯物主義認識論觀點,滲透事物相互聯系、相互轉化的辯證唯物主義世界觀.
4.培養學生求真務實、實事求是的科學態度.
二、重點、難點、關鍵
重點:任意角的正弦、余弦、正切函數的定義、定義域、(正負)符號判斷法.
難點:把三角函數理解為以實數為自變量的函數.
關鍵:如何想到建立直角坐標系;六個比值的確定性(α確定,比值也隨之確定)與依賴性(比值隨著α的變化而變化).
三、教學理念和方法
教學中注意用新課程理念處理傳統教材,學生的數學學習活動不僅要接受、記憶、模仿和練習,而且要自主探索、動手實踐、合作交流、閱讀自學,師生互動,教師發揮組織者、引導者、合作者的作用,引導學生主體參與、揭示本質、經歷過程.
根據本節課內容、高一學生認知特點和我自己的教學風格,本節課采用"啟發探索、講練結合"的方法組織教學.
四、教學過程
[執教線索:
回想再認:函數的概念、銳角三角函數定義(銳角三角形邊角關系)--問題情境:能推廣到任意角嗎?--它山之石:建立直角坐標系(為何?)--優化認知:用直角坐標系研究銳角三角函數--探索發展:對任意角研究六個比值(與角之間的關系:確定性、依賴性,滿足函數定義嗎?)--自主定義:任意角三角函數定義--登高望遠:三角函數的要素分析(對應法則、定義域、值域與正負符號判定)--例題與練習小明回顧小結--布置作業]
(一)復習引入、回想再認
開門見山,面對全體學生提問:
在初中我們初步學習了銳角三角函數,前幾節課,我們把銳角推廣到了任意角,學習了角度制和弧度制,這節課該研究什么呢?
探索任意角的三角函數(板書課題),請同學們回想,再明確一下:
(情景1)什么叫函數?或者說函數是怎樣定義的?
讓學生回想后再點名回答,投影顯示規范的定義,教師根據回答情況進行修正、強調:
傳統定義:設在一個變化過程中有兩個變量x與y,如果對于x的每一個值,y都有唯一確定的值和它對應,那么就說y是x的函數,x叫做自變量,自變量x的取值范圍叫做函數的定義域.
現代定義:設A、B是非空的數集,如果按某個確定的對應關系f,使對于集合A中的任意一個數,在集合B中都有唯一確定的數f(x)和它對應,那么就稱映射?:A→B為從集合A到集合B的一個函數,記作:y=f(x),x∈A,其中x叫自變量,自變量x的取值范圍A叫做函數的定義域.
設計意圖:
函數和三角函數是一般和特殊的關系,是共性和個性的關系,學生已經學習了函數的概念,因此對三角函數的學習就是一個從一般到特殊的演繹的過程,也是以具體函數豐富函數概念的過程.教學經驗表明:學生對函數兩種定義的記憶是有一定困難的,容易遺忘,此處讓學生對函數概念進行回想再認,目的在于明確函數概念的本質,為演繹學習任意角三角函數概念作好知識和認知準備.
(情景2)我們在初中通過銳角三角形的邊角關系,學習了銳角的正弦、余弦、正切等三個三角函數.請回想:這三個三角函數分別是怎樣規定的?
學生口述后再投影展示,教師再根據投影進行強調:
設計意圖:
學生在初中學習了銳角的三角函數概念,現在學習任意角的三角函數,又是一種推廣和拓展的過程(類似于從有理數到實數的擴展).溫故知新,要讓學生體會知識的產生、發展過程,就要從源頭上開始,從學生現有認知狀況開始,對銳角三角函數的復習就必不可少.
(二)引伸鋪墊、創設情景
(情景3)我們已經把銳角推廣到了任意角,銳角的三角函數概念也能推廣到任意角嗎?試試看,可以獨立思考和探索,也可以互相討論!
留時間讓學生獨立思考或自由討論,教師參與討論或巡回對學困生作啟發引導.
能推廣嗎?怎樣推廣?針對剛才的問題點名讓學生回答.用角的對邊、臨邊、斜邊比值的說法顯然是受到阻礙了,由于4.1節已經以直角坐標系為工具來研究任意角了,學生一般會想到(否則教師進行提示)繼續用直角坐標系來研究任意角的三角函數.
設計意圖:
從學生現有知識水平和認知能力出發,創設問題情景,讓學生產生認知沖突,進行必要的啟發,將學生思維引上自主探索、合作交流的"再創造"征程.
教師對學生回答情況進行點評后布置任務情景:請同學們用直角坐標系重新研究銳角三角函數定義!
師生共做(學生口述,教師板書圖形和比值):
把銳角α安裝(如何安裝?角的頂點與原點重合,角的始邊與x軸非負半軸重合)在直角坐標系中,在角α終邊上任取一點P,作Pm⊥x軸于m,構造一個RtΔomP,則∠moP=α(銳角),設P(x,y)(x>0、y>0),α的臨邊om=x、對邊mP=y,斜邊長oP∣=r.
根據銳角三角函數定義用x、y、r列出銳角α的正弦、余弦、正切三個比值,并補充對應列出三個倒數比值:
設計意圖:
此處做法簡單,思想重要.為了順利實現推廣,可以構建中間橋梁或公共載體,使之既與初中的定義一致,又能自然地遷移到任意角的情形.由于前一節已經以直角坐標系為工具來研究任意角了,學生自然能想到仍然以直角坐標系為工具來研究任意角的三角函數.初中以直角三角形邊角關系來定義銳角三角函數,現在要用坐標系來研究,探索的結論既要滿足任意角的情形,又要包容初中銳角三角函數定義.這是一個認識的飛躍,是理解任意角三角函數概念的關鍵之一,也是數學發現的重要思想和方法,屬于策略性知識,能夠形成遷移能力,為學生在以后學習中對某些知識進行推廣拓展奠定了基礎(譬如從平面向量到空間向量的擴展,從實數到復數的擴展等).
(情景4)各個比值與角之間有怎樣的關系?比值是角的函數嗎?
追問:銳角α大小發生變化時,比值會改變嗎?
先讓學生想象思考,作出主觀判斷,再用幾何畫板動畫演示,同時作好解釋說明:保持r不變,讓P繞原點o旋轉即α在銳角范圍內變化,六個比值隨之變化的直觀形象。結論是:比值隨α的變化而變化.
引導學生觀察圖3,聯系相似三角形知識,
探索發現:
對于銳角α的每一個確定值,六個比值都是
確定的,不會隨P在終邊上的移動而變化.
得出結論(強調):當α為銳角時,六個比值隨α的變化而變化;但對于銳角α的每一個確定值,六個比值都是確定的,不會隨P在終邊上的移動而變化.所以,六個比值分別是以角α為自變量、以比值為函數值的函數.
設計意圖:
初中學生對函數理解較膚淺,這里在學生思維的最近發展區進一步研究初中學過的銳角三角函數,在思維上更上了一個層次,扣準函數概念的內涵,突出變量之間的依賴關系或對應關系,是從函數知識演繹到三角函數知識的主要依據,是準確理解三角函數概念的關鍵,也是在認知上把三角函數知識納入函數知識結構的關鍵.這樣做能夠使學生有效地增強函數觀念.
(三)分析歸納、自主定義
(情境5)能將銳角的比值情形推廣到任意角α嗎?
水到渠成,師生共同進行探索和推廣:
對于一個任意角α,它的終邊所在位置包括下列兩類共八種情形(投影展示并作分析):
終邊分別在四個象限的情形:終邊分別在四個半軸上的情形:
;
(指出:不畫出角的方向,表明角具有任意性)
怎樣刻畫任意角的三角函數呢?研究它的六個比值:
(板書)設α是一個任意角,在α終邊上除原點外任意取一點P(x,y),P與原點o之間的距離記作r(r=>0),列出六個比值:
α=kππ/2時,x=0,比值y/x、r/x無意義;
α=kπ時,y=0,比值x/y、r/y無意義.
追問:α大小發生變化時,比值會改變嗎?
先讓學生想象思考,作出主觀判斷,再用幾何畫板動畫演示,同時作好解釋說明:使r保持不變,P繞原點o逆時針、順時針旋轉即角α變化,六個比值隨之改變的直觀形象。結論是:各比值隨α的變化而變化.
再引導學生利用相似三角形知識,探索發現:對于任意角α的每一個確定值,六個比值都是確定的,不會隨P在終邊上的移動而變化.
綜上得到(強調):當角α變化時,六個比值隨之變化;對于確定的角α,六個比值(如果存在的話)都不會隨P在角α終邊上的改變而改變,六個比值是確定的(對應的多值性即誘導公式一留到下節課分析).
因此,六個比值分別是以角α為自變量、以比值為函數值的函數.
根據歷史上的規定,對比值進行命名,指出英文記法和讀法,記作(承前作復合板書):
=sinα(正弦)=cosα(余弦)=tanα(正切)
=cscα(余割)=sec(正弦)=cotα(余切)
教師強調:sinα表示sin與α的乘積嗎?不是,sinα是函數記號,是一個整體,相當于函數記號f(x).其它幾個三角函數也如此
投影顯示圖六,指導學生分析其對應關系,進一步體會其函數內涵:
(圖六)
指導學生識記六個比值及函數名稱.
教師指出:正弦、余弦、正切、余切、正割、余割六個函數統稱為三角函數,三角函數有非常豐富的知識和思想方法,我們以后主要學習正弦、余弦、正切三個函數的相關知識和方法,對于余切、正割、余割,只要同學們了解它們的定義就夠了(遵循大綱要求).
引導學生進一步分析理解:
已知角的集合與實數集之間可以建立一一對應關系,對于每一個確定的實數,把它看成一個弧度數,就對應著唯一的一個角,從而分別對應著六個唯一的三角函數值.因此,(板書)三角函數可以看成是以實數為自變量的函數,這將為以后的應用帶來很多方便.
設計意圖:
把角的終邊分別在四個象限、四條半軸上的情形全作出來,有利于對任意性的全面把握.明確比值存在與否的條件,為確定函數定義域作準備.動畫演示比值與角之間的依賴性與確定性關系,深化理解三角函數內涵.引導學生在理解的基礎上自主地對三角函數作出明確定義,是本節課的中心任務.由于學生剛學弧度制,對弧度制的理解有待于在以后的學習應用中逐步感悟,因此部分學生對"三角函數可以看成是以實數為自變量的函數"的理解有半信半疑之感,有待通過后續的應用加深理解.
(四)探索定義域
(情景6)(1)函數概念的三要素是什么?
函數三要素:對應法則、定義域、值域.
正弦函數sinα的對應法則是什么?
正弦函數sinα的對應法則,實質上就是sinα的定義:對α的每一個確定的值,有唯一確定的比值y/r與之對應,即α→y/r=sinα.
(2)布置任務情景:什么是三角函數的定義域?請求出六個三角函數的定義域,填寫下表:
三角函數
sinα
cosα
tanα
cotα
cscα
secα
定義域
引導學生自主探索:
如果沒有特別說明,那么使解析式有意義的自變量的取值范圍叫做函數的定義域,三角函數的定義域自然是指:使比值有意義的角α的取值范圍.
關于sinα=y/r、cosα=x/r,對于任意角α(弧度數),r>0,y/r、x/r恒有意義,定義域都是實數集R.
對于tanα=y/x,α=kππ/2時x=0,y/x無意義,tanα的定義域是:{αα∈R,且α≠kππ/2}..........
教師指出:sinα、cosα、tanα的定義域必須緊扣三角函數定義在理解的基礎上記熟,cotα、cscα、secα的定義域不要求記憶.
(關于值域,到后面再學習).
設計意圖:
定義域是函數三要素之一,研究函數必須明確定義域.指導學生根據定義自主探索確定三角函數定義域,有利于在理解的基礎上記住它、應用它,也增進對三角函數概念的掌握.
(五)符號判斷、形象識記
(情景7)能判斷三角函數值的正、負嗎?試試看!
引導學生緊緊抓住三角函數定義來分析,r>0,三角函數值的符號決定于x、y值的正負,根據終邊所在位置總結出形象的識記口訣:
(同好得正、異號得負)
sinα=y/r:上正下負橫為0cosα=x/r:左負右正縱為0tanα=y/x:交叉正負
設計意圖:
判斷三角函數值的正負符號,是本章教材的一項重要的知識、技能要求.要引導學生抓住定義、數形結合判斷和記憶三角函數值的正負符號,并總結出形象的識記口訣,這也是理解和記憶的關鍵.
(六)練習鞏固、理解記憶
1、自學例1:已知角α的終邊經過點P(2,-3),求α的六個三角函數值.
要求:讀完題目,思考:計算什么?需要準備什么?閉目心算,對照解答,模仿書面表達格式,鞏固定義.
課堂練習:
p19題1:已知角α的終邊經過點P(-3,-1),求α的六個三角函數值.
要求心算,并提問中下學生檢驗,--------
點評:角α終邊上有無窮多個點,根據三角函數的定義,只要知道α終邊上任意一個點的坐標,就可以計算這個角的三角函數值(或判斷其無意義).
補充例題:已知角α的終邊經過點P(x,-3),cosα=4/5,求α的其它五個三角函數值.
師生探索:已知y=-3,要求其它五個三角函數值,須知r=?,x=?.根據定義得=(方程思想),x>0,解得x=4,從而--------.解答略.
2、自學例2:求下列各角的六個三角函數值:(1)0;(2)π/2;(3)3π/2.
提問,據反饋信息作點評、修正.
師生探索:緊扣三角函數定義求解,首先要在終邊上取定一點。終邊在哪兒呢?取定哪一點呢?任意點、還是特殊點?要靈活,只要能夠算出三角函數值,都可以。
取特殊點能使計算更簡明。課堂練習:p19題2.(改編)填表:
角α(角度)
0°
90°
180°
270°
360°
角α(弧度)
sinα
cosα
tanα
處理:要求取點用定義求解,針對計算過程提問、點評,理解鞏固定義.
強調:終邊在坐標軸上的角叫軸線角,如0、π/2、π、3π/2等,今后經常用到軸線角的三角函數值,要結合三角函數定義記熟這些值.
設計意圖:
及時安排自學例題、自做教材練習題,一般性與特殊性相結合,進行適量的變式練習,以鞏固和加深對三角函數概念的理解,通過課堂積極主動的練習活動進行思維訓練,把"培養學生分析解決問題的能力"貫穿在每一節課的課堂教學始終.
(七)回顧小結、建構網絡
要求全體學生根據教師所提問題進行總結識記,提問檢查并強調:
1.你是怎樣把銳角三角函數定義推廣到任意角的?或者說任意角三角函數具體是怎樣定義的?(建立直角坐標系,使角的頂點與坐標原點重合,---,在終邊上任意取定一點P,---)
2.你如何判斷和記憶正弦、余弦、正切函數的定義域?(根據定義,------)
3.你如何記憶正弦、余弦、正切函數值的符號?(根據定義,想象坐標位置,-----)
設計意圖:
遺忘的規律是先快后慢,回顧再現是記憶的重要途徑,在課堂內及時總結識記主要內容是上策.此處以問題形式讓學生自己歸納識記本節課的主體內容,抓住要害,人人參與,及時建構知識網絡,優化知識結構,培養認知能力.
(八)布置課外作業
1.書面作業:習題4.3第3、4、5題.
2.認真閱讀p22"閱讀材料:三角函數與歐拉",了解歐拉的生平和貢獻,特別學習他對科學的摯著精神和堅忍不拔的頑強毅力!有興趣的同學可以上網查閱歐拉的相關情況.
教學設計說明
一、對本節教材的理解
三角函數是描述周期運動現象的重要的數學模型,有非常廣泛的應用.
星星之火,可以燎原.
直角三角形簡單樸素的邊角關系,以直角坐標系為工具進行自然地推廣而得到簡明的任意角的三角函數定義,緊緊扣住三角函數定義這個寶貴的源泉,自然地導出三角函數線、定義域、符號判斷、值域、同角三角函數關系、多組誘導公式、多組變換公式、輔助角公式、圖象和性質,本章教材就是這些內容的具體安排.定義直接用于解析幾何(如直線斜率公式、極坐標、部分曲線的參數方程等),定義還是直接解決某些問題的工具,三角函數知識是物理學、高等數學、測量學、天文學的重要基礎.
三角函數定義必然是學好全章內容的關鍵,如果學生掌握不好,將直接影響到后續內容的學習,由三角函數定義的基礎性和應用的廣泛性決定了本節教材的重點就是定義本身.
二、教學法加工
數學教材通常用抽象概括的形式化的數學書面語言闡述其知識和方法,教師只有通過教學法加工,始終貫徹"以學生的發展為本"的科學教育觀,"將數學的學術形態轉化為教育形態"(張奠宙語),引導學生積極主動地進行思考活動,直接參與體驗數學知識產生發展的背景、過程,返璞歸真,揭示本質,體會其中的思想和方法,學生只有這樣才能真正理解掌握數學知識和方法,有效地發展智力、培養能力.
在本節教材中,三角函數定義是重點,三角函數線是難點,為了較好地突出重點和突破難點,分散重點和難點,同時兼顧例題、課堂練習的協調匹配,將不按教材順序來進行教學,第一課時安排三角函數的定義(突出重點)、定義域、符號判斷、例題1、2及p19課堂練習1、2、3,第二課時安排三角函數線、p15練習(突破難點)、誘導公式一及課本例題3、4和其它練習.本課例屬第一課時.
教學經驗表明,三角函數定義"簡單易記",學生很容易輕視它,不少學生機械記憶、一知半解.本課例堅持"教師主導、學生主體"的原則,采用"啟發探索、講練結合"的常規教學方法,在學生的最近發展區圍繞學生的學習目標設計了一系列符合學生認知規律的程序,通過多媒體輔助教學動畫演示比值與角之間的依賴關系,拓展思維活動時空,力求使學生全員主動參與,積極思考,體會定義產生、發展的過程,通過思維過程來理解知識、培養能力.
將六個比值放在一起來研究,同時給出六個三角函數的定義,能夠增強對比感和整體感,至于大綱對兩組函數掌握與了解的不同要求,在下一步的教學中注意區分就行了.
教學中關于符號sinα、cosα、tanα的出場安排,教材首先對比值取名并給出英文記法,再研究它們與α的函數關系;另外可以先研究六個比值與α之間的函數關系,然后再對六個比值取名給出記法.后者更能突出函數內涵,揭示三角函數本質.本課例采用后者組織教學.
三、教學過程分析(見穿插在教案中的設計意圖).
高中數學教案通用模板篇9
依據如下:
(1)從認知領域上講,它在陳述性知識、程序性知識與策略性知識的分類中,屬于學生最高需求層次的掌握策略與方法的策略性知識。
(2)從學科知識上講,推導屬于學科邏輯中的“瓶頸”,突破這一“瓶頸”則后面的問題迎刃而解。
(3)從心理學上講,學生對這項學習內容的“熟悉度”不高,原有知識薄弱,不易理解。
突破難點方法:
(1)明確難點、分解難點,采用層層推導延伸法,利用學生已有的知識切入,淺化知識內容。比如可以先求麥粒的總數,通過設問使學生得到麥粒的總數為,然后引導學生觀察上式的特點,發現上式中,每一項乘以2后都得它的后一項,即有,發現兩式右邊有62項相同,啟發同學們找到解決問題的關鍵是等式左右同時乘以2,相減得和。從而得知求等比數列前n項和……+的關鍵也應是等式左右各項乘以公比q,兩式相減去掉相同項,得求和公式,也掌握了這種常用的數列求和方法——錯位相減法,說明這種方法的用途。
(2)值得一提的是公式的證明還有兩種方法:
后兩種方法可以啟發引導學生自行完成。這樣學生從各種途徑,用多種方法推導公式,從而培養學生的創造性思維。
等比數列前n項和公式及應用是本節課的重點內容。
依據如下:
(1)新大綱中有較高層次的要求。
(2)教學地位重要,是教學中全部學習任務中必須優先完成的任務。
(3)這項知識內容有廣泛的實際應用,很多問題都要轉化為等比數列的求和上來。
突出重點方法:
(1)明確重點。利用高一學生求知積極性和初步具有的數學思維能力,運用比較法來突出公式的內容(彩色粉筆板書):,強調公式的應用范圍:中可知三求二。
(2)運用糾錯法對公式中學生容易出錯的地方,即公式的條件,以精練的語言給予強調,并指出q=1時,。再有就是有些數列求和的項數易錯,例如的項數是n+1而不是n。
(3)創設條件、充分保證。設置低、中、高三個層次的例題,即公式的直接應用、公式的變形應用和實際應用來突出這一重點。對應用題師生要共同分析討論,從問題中抽象出等比數列,然后用公式求和。
2.實際應用題.
這樣設置主要依據:
(1)練習題與大綱中規定的教學目標與任務及本節課的重點、難點有相對應的匹配關系。
(2)遵循鞏固性原則和傳授——反饋——再傳授的教學系統的思想確立這樣的習題。
(3)應用題比較切合對智力技能進行檢測,有利于數學能力的提高。同時,它可以使學生在后半程學習中保持興趣的持續性和學習的主動性,。
根據高一學生心理特點、教材內容、遵循因材施教原則和啟發性教學思想,本節課的教學策略與方法我采用規則學習和問題解決策略,即“案例—公式—應用”,簡稱“例—規”法。
案例為淺層次要求,使學生有概括印象。
公式為中層次要求,由淺入深,重難點集中推導講解,便于突破。
應用為綜合要求,多角度、多情境中消化鞏固所學,反饋驗證本節教學目標的落實。
其中,案例是基礎,是學生感知教材;公式為關鍵,是學生理解教材;練習為應用,是學生鞏固知識,舉一反三。
在這三步教學中,以啟發性強的小設問層層推導,輔之以學生的分組小討論并充分運用直觀完整的板書、棋盤教具和計算機課件等教輔用具、手段,改變教師講、學生聽的填鴨式教學模式,充分體現學生是主體,教師教學服務于學生的思路,而且學生通過“案例—公式—應用”,由淺入深,由感性到理性,由直觀到抽象,加深了學生理解鞏固與應用,有利于培養學生思維能力,落實好教學任務。
在提倡教育改革的今天,對學生進行思維技能培養已成了我們非常重要的一項教學任務。研究性學習已在全國范圍內展開,等比數列就是一個進行研究性學習的好題材。在我們學??梢园凑誌ntel未來教育計劃培訓的模式,學完本節課后,教師可以給學生布置一個研究分期付款的課題,讓學生利用網絡資源,多方查找資料,并通過完成多媒體演示文稿和網頁制作來共同解決這一問題。這樣不僅培養了學生主動探究問題、解決問題的能力,而且還提高了他們的創新意識和團結協作的精神。
高中數學教案通用模板篇10
說課內容:普通高中課程標準實驗教科書(人教A版)《數學必修4》第二章第四節“平面向量的數量積”的第一課時---平面向量數量積的物理背景及其含義。
下面,我從背景分析、教學目標設計、課堂結構設計、教學過程設計、教學媒體設計及教學評價設計六個方面對本節課的思考進行說明。
一、背景分析
1、學習任務分析
平面向量的數量積是繼向量的線性運算之后的又一重要運算,也是高中數學的一個重要概念,在數學、物理等學科中應用十分廣泛。本節內容教材共安排兩課時,其中第一課時主要研究數量積的概念,第二課時主要研究數量積的坐標運算,本節課是第一課時。
本節課的主要學習任務是通過物理中“功”的事例抽象出平面向量數量積的概念,在此基礎上探究數量積的性質與運算律,使學生體會類比的思想方法,進一步培養學生的抽象概括和推理論證的能力。其中數量積的概念既是對物理背景的抽象,又是研究性質和運算律的基礎。同時也因為在這個概念中,既有長度又有角度,既有形又有數,是代數、幾何與三角的最佳結合點,不僅應用廣泛,而且很好的體現了數形結合的數學思想,使得數量積的概念成為本節課的核心概念,自然也是本節課教學的重點。
2、學生情況分析
學生在學習本節內容之前,已熟知了實數的運算體系,掌握了向量的概念及其線性運算,具備了功等物理知識,并且初步體會了研究向量運算的一般方法:即先由特殊模型(主要是物理模型)抽象出概念,然后再從概念出發,在與實數運算類比的基礎上研究性質和運算律。這為學生學習數量積做了很好的鋪墊,使學生倍感親切。但也正是這些干擾了學生對數量積概念的理解,一方面,相對于線性運算而言,數量積的結果發生了本質的變化,兩個有形有數的向量經過數量積運算后,形卻消失了,學生對這一點是很難接受的;另一方面,由于受實數乘法運算的影響,也會造成學生對數量積理解上的偏差,特別是對性質和運算律的理解。因而本節課教學的難點數量積的概念。
二、教學目標設計
《普通高中數學課程標準(實驗)》對本節課的要求有以下三條:
(1)通過物理中“功”等事例,理解平面向量數量積的含義及其物理意義。
(2)體會平面向量的數量積與向量投影的關系。
(3)能用運數量積表示兩個向量的夾角,會用數量積判斷兩個平面向量的垂直關系。
從以上的背景分析可以看出,數量積的概念既是本節課的重點,也是難點。為了突破這一難點,首先無論是在概念的引入還是應用過程中,物理中“功”的實例都發揮了重要作用。其次,作為數量積概念延伸的性質和運算律,不僅能夠使學生更加全面深刻地理解概念,同時也是進行相關計算和判斷的理論依據。最后,無論是數量積的性質還是運算律,都希望學生在類比的基礎上,通過主動探究來發現,因而對培養學生的抽象概括能力、推理論證能力和類比思想都無疑是很好的載體。
綜上所述,結合“課標”要求和學生實際,我將本節課的教學目標定為:
1、了解平面向量數量積的物理背景,理解數量積的含義及其物理意義;
2、體會平面向量的數量積與向量投影的關系,掌握數量積的性質和運算律,
并能運用性質和運算律進行相關的運算和判斷;
3、體會類比的數學思想和方法,進一步培養學生抽象概括、推理論證的能力。
三、課堂結構設計
本節課從總體上講是一節概念教學,依據數學課程改革應關注知識的發生和發展過程的理念,結合本節課的知識的邏輯關系,我按照以下順序安排本節課的教學:
即先從數學和物理兩個角度創設問題情景,通過歸納和抽象得到數量積的概念,在此基礎上研究數量積的性質和運算律,使學生進一步加深對概念的理解,然后通過例題和練習使學生鞏固概念,加深印象,最后通過課堂小結提高學生認識,形成知識體系。
四、教學媒體設計
和“大綱”教材相比,“課標”教材在本節課的內容安排上,雖然將向量的夾角在“平面向量基本定理”一節提前做了介紹,但卻將原來分兩節課完成的內容合并成一節,相比較而言本節課的教學任務加重了許多。為了保證教學任務的完成,順利實現本節課的教學目標,考慮到本節課的實際特點,在教學媒體的使用上,我的設想主要有以下兩點:
1、制作高效實用的電腦多媒體課件,主要作用是改變相關內容的呈現方式,以此來節約課時,增加課堂容量。
2、設計科學合理的板書(見下),一方面使學生加深對主要知識的印象,另一方面使學生清楚本節內容知識間的邏輯關系,形成知識網絡。
平面向量數量積的物理背景及其含義
一、數量積的概念二、數量積的性質四、應用與提高
1、概念:例1:
2、概念強調(1)記法例2:
(2)“規定”三、數量積的運算律例3:
3、幾何意義:
4、物理意義:
五、教學過程設計
課標指出:數學教學過程是教師引導學生進行學習活動的過程,是教師和學生間互動的過程,是師生共同發展的過程。為有序、有效地進行教學,本節課我主要安排以下六個活動:
活動一:創設問題情景,激發學習興趣
正如教材主編寄語所言,數學是自然的,而不是強加于人的。平面向量的數量積這一重要概念,和向量的線性運算一樣,也有其數學背景和物理背景,為了體現這一點,我設計以下幾個問題:
問題1:我們已經研究了向量的哪些運算?這些運算的結果是什么?
問題2:我們是怎么引入向量的加法運算的?我們又是按照怎樣的順序研究了這種運算的?
期望學生回答:物理模型→概念→性質→運算律→應用
問題3:如圖所示,一物體在力F的作用下產生位移S,
(1)力F所做的功W=。
(2)請同學們分析這個公式的特點:
W(功)是量,
F(力)是量,
S(位移)是量,
α是。
問題1的設計意圖在于使學生了解數量積的數學背景,讓學生明白本節課所要研究的數量積與向量的加法、減法及數乘一樣,都是向量的運算,但與向量的線性運算相比,數量積運算又有其特殊性,那就是其結果發生了本質的變化。
問題2的設計意圖在于使學生在與向量加法類比的基礎上明了本節課的研究方法和順序,為教學活動指明方向。
問題3的設計意圖在于使學生了解數量積的物理背景,讓學生知道,我們研究數量積絕不僅僅是為了數學自身的完善,而是有其客觀背景和現實意義的,從而產生了進一步研究這種新運算的愿望。同時,也為抽象數量積的概念做好鋪墊。
活動二:探究數量積的概念
1、概念的抽象
在分析“功”的計算公式的基礎上提出問題4
問題4:你能用文字語言來表述功的計算公式嗎?如果我們將公式中的力與位移推廣到一般向量,其結果又該如何表述?
學生通過思考不難回答:功是力與位移的大小及其夾角余弦的乘積;兩個向量的大小及其夾角余弦的乘積。這樣,學生事實上已經得到數量積概念的文字表述了,在此基礎上,我進一步明晰數量積的概念。
2、概念的明晰
已知兩個非零向量
與
,它們的夾角為
,我們把數量︱
︱·︱
︱cos
叫做
與
的數量積(或內積),記作:
·
,即:
·
=︱
︱·︱
︱cos
在強調記法和“規定”后,為了讓學生進一步認識這一概念,提出問題5
問題5:向量的數量積運算與線性運算的結果有什么不同?影響數量積大小的因素有哪些?并完成下表:
角
的范圍0°≤
<90°
=90°0°<
≤180°
·
的符號
通過此環節不僅使學生認識到數量積的結果與線性運算的結果有著本質的不同,而且認識到向量的夾角是決定數量積結果的重要因素,為下面更好地理解數量積的性質和運算律做好鋪墊。
3、探究數量積的幾何意義
這個問題教材是這樣安排的:在給出向量數量積的概念后,只介紹了向量投影的定義,直到講完例1后,為了證明運算律的第三條才直接以結論的形式呈現給學生,我覺得這樣安排似乎不太自然,還不如在給出向量投影的概念后,直接由學生自己歸納得出,所以做了調整。為此,我首先給出給出向量投影的概念,然后提出問題5。
如圖,我們把│
│cos
(│
│cos
)叫做向量
在
方向上(
在
方向上)的投影,記做:OB1=│
│cos
問題6:數量積的幾何意義是什么?
這樣做不僅讓學生從“形”的角度重新認識數量積的概念,從中體會數量積與向量投影的關系,同時也更符合知識的連貫性,而且也節約了課時。
4、研究數量積的物理意義
數量積的概念是由物理中功的概念引出的,學習了數量積的概念后,學生就會明白功的數學本質就是力與位移的數量積。為此,我設計以下問題一方面使學生嘗試計算數量積,另一方面使學生理解數量積的物理意義,同時也為數量積的性質埋下伏筆。
問題7:
(1)請同學們用一句話來概括功的數學本質:功是力與位移的數量積。
(2)嘗試練習:一物體質量是10千克,分別做以下運動:
①、在水平面上位移為10米;
②、豎直下降10米;
③、豎直向上提升10米;
④、沿傾角為30度的斜面向上運動10米;
分別求重力做的功。
活動三:探究數量積的運算性質
1、性質的發現
教材中關于數量積的三條性質是以探究的形式出現的,為了很好地完成這一探究活動,在完成上述練習后,我不失時機地提出問題8:
(1)將嘗試練習中的①②③的結論推廣到一般向量,你能得到哪些結論?
(2)比較︱
·
︱與︱
︱×︱
︱的大小,你有什么結論?
在學生討論交流的基礎上,教師進一步明晰數量積的性質,然后再由學生利用數量積的定義給予證明,完成探究活動。
2、明晰數量積的性質
3、性質的證明
這樣設計體現了教師只是教學活動的引領者,而學生才是學習活動的主體,讓學生成為學習的研究者,不斷地體驗到成功的喜悅,激發學生參與學習活動的熱情,不僅使學生獲得了知識,更培養了學生由特殊到一般的思維品質。
活動四:探究數量積的運算律
1、運算律的發現
關于運算律,教材仍然是以探究的形式出現,為此,首先提出問題9
問題9:我們學過了實數乘法的哪些運算律?這些運算律對向量是否也適用?
通過此問題主要是想使學生在類比的基礎上,猜測提出數量積的運算律。
學生可能會提出以下猜測:①
·
=
·
②(
·
)
=
(
·
)③(
+
)·
=
·
+
·
猜測①的正確性是顯而易見的。
關于猜測②的正確性,我提示學生思考下面的問題:
猜測②的左右兩邊的結果各是什么?它們一定相等嗎?
學生通過討論不難發現,猜測②是不正確的。
這時教師在肯定猜測③的基礎上明晰數量積的運算律:
2、明晰數量積的運算律
3、證明運算律
學生獨立證明運算律(2)
我把運算運算律(2)的證明交給學生完成,在證明時,學生可能只考慮到λ>0的情況,為了幫助學生完善證明,提出以下問題:
當λ<0時,向量
與λ
,
與λ
的方向的關系如何?此時,向量λ
與
及
與λ
的夾角與向量
與
的夾角相等嗎?
師生共同證明運算律(3)
運算律(3)的證明對學生來說是比較困難的,為了節約課時,這個證明由師生共同完成,我想這也是教材的本意。
在這個環節中,我仍然是首先為學生創設情景,讓學生在類比的基礎上進行猜想歸納,然后教師明晰結論,最后再完成證明,這樣做不僅培養了學生推理論證的能力,同時也增強了學生類比創新的意識,將知識的獲得和能力的培養有機的結合在一起。
活動五:應用與提高
例1、(師生共同完成)已知︱
︱=6,︱
︱=4,
與
的夾角為60°,求
(
+2
)·(
-3
),并思考此運算過程類似于哪種運算?
例2、(學生獨立完成)對任意向量
,b是否有以下結論:
(1)(
+
)2=
2+2
·
+
2
(2)(
+
)·(
-
)=
2—
2
例3、(師生共同完成)已知︱
︱=3,︱
︱=4,且
與
不共線,k為何值時,向量
+k
與
-k
互相垂直?并思考:通過本題你有什么收獲?
本節教材共安排了四道例題,我根據學生實際選擇了其中的三道,并對例1和例3增加了題后反思。例1是數量積的性質和運算律的綜合應用,教學時,我重點從對運算原理的分析和運算過程的規范書寫兩個方面加強示范。完成計算后,進一步提出問題:此運算過程類似于哪種運算?目的是想讓學生在類比多項式乘法的基礎上自己猜測提出例2給出的.兩個公式,再由學生獨立完成證明,一方面這并不困難,另一方面培養了學生通過類比這一思維模式達到創新的目的。例3的主要作用是,在繼續鞏固性質和運算律的同時,教給學生如何利用數量積來判斷兩個向量的垂直,是平面向量數量積的基本應用之一,教學時重點給學生分析數與形的轉化原理。
為了使學生更好的理解數量積的含義,熟練掌握性質及運算律,并能夠應用數量積解決有關問題,再安排如下練習:
1、下列兩個命題正確嗎?為什么?
①、若
≠0,則對任一非零向量
,有
·
≠0.
②、若
≠0,
·
=
·
,則
=
.
2、已知△ABC中,
=
,
=
,當
·
<0或
·
=0時,試判斷△ABC的形狀。
安排練習1的主要目的是,使學生在與實數乘法比較的基礎上全面認識數量積這一重要運算,
通過練習2使學生學會用數量積表示兩個向量的夾角,進一步感受數量積的應用價值。
活動六:小結提升與作業布置
1、本節課我們學習的主要內容是什么?
2、平面向量數量積的兩個基本應用是什么?
3、我們是按照怎樣的思維模式進行概念的歸納和性質的探究?在運算律的探究過程中,滲透了哪些數學思想?
4、類比向量的線性運算,我們還應該怎樣研究數量積?
通過上述問題,使學生不僅對本節課的知識、技能及方法有了更加全面深刻的認識,同時也為下
一節做好鋪墊,繼續激發學生的求知欲。
布置作業:
1、課本P121習題2.4A組1、2、3。
2、拓展與提高:
已知
與
都是非零向量,且
+3
與7
-5
垂直,
-4
與7
-2
垂直求
與
的夾角。
在這個環節中,我首先考慮檢測全體學生是否都達到了“課標”的基本要求,因此安排了一組教材中的習題,目的是讓所有的學生繼續加深對數量積概念的理解和應用,為后續學習打好基礎。其次,為了能讓不同的學生在數學領域得到不同的發展,我又安排了一道有一定難度的問題供學有余力的同學選做。
六、教學評價設計
評價方式的轉變是新課程改革的一大亮點,課標指出:相對于結果,過程更能反映每個學生的發展變化,體現出學生成長的歷程。因此,數學學習的評價既要重視結果,也要重視過程。結合“課標”對數學學習的評價建議,對本節課的教學我主要通過以下幾種方式進行:
1、通過與學生的問答交流,發現其思維過程,在鼓勵的基礎上,糾正偏差,并對其進行定
性的評價。
2、在學生討論、交流、協作時,教師通過觀察,就個別或整體參與活動的態度和表現做出評價,以此來調動學生參與活動的積極性。
3、通過練習來檢驗學生學習的效果,并在講評中,肯定優點,指出不足。
4、通過作業,反饋信息,再次對本節課做出評價,以便查漏補缺。
高中數學教案通用模板篇11
圓的方程
教學目標
(1)掌握圓的標準方程,能根據圓心坐標和半徑熟練地寫出圓的標準方程,也能根據圓的標準方程熟練地寫出圓的圓心坐標和半徑.
(2)掌握圓的一般方程,了解圓的一般方程的結構特征,熟練掌握圓的標準方程和一般方程之間的互化.
(3)了解參數方程的概念,理解圓的參數方程,能夠進行圓的普通方程與參數方程之間的互化,能應用圓的參數方程解決有關的簡單問題.
(4)掌握直線和圓的位置關系,會求圓的切線.
(5)進一步理解曲線方程的概念、熟悉求曲線方程的方法.
教學建議
教材分析
(1)知識結構
(2)重點、難點分析
①本節內容教學的重點是圓的標準方程、一般方程、參數方程的推導,根據條件求圓的方程,用圓的方程解決相關問題.
②本節的難點是圓的一般方程的結構特征,以及圓方程的求解和應用.
教法建議
(1)圓是最簡單的曲線.這節教材安排在學習了曲線方程概念和求曲線方程之后,學習三大圓錐曲線之前,旨在熟悉曲線和方程的理論,為后繼學習做好準備.同時,有關圓的問題,特別是直線與圓的位置關系問題,也是解析幾何中的基本問題,這些問題的解決為圓錐曲線問題的解決提供了基本的思想方法.因此教學中應加強練習,使學生確實掌握這一單元的知識和方法.
(2)在解決有關圓的問題的過程中多次用到配方法、待定系數法等思想方法,教學中應多總結.
(3)解決有關圓的問題,要經常用到一元二次方程的理論、平面幾何知識和前邊學過的解析幾何的基本知識,教師在教學中要注意多復習、多運用,培養學生運算能力和簡化運算過程的意識.
(4)有關圓的內容非常豐富,有很多有價值的問題.建議適當選擇一些內容供學生研究.例如由過圓上一點的切線方程引申到切點弦方程就是一個很有價值的問題.類似的還有圓系方程等問題.
教學設計示例
圓的一般方程
教學目標:
(1)掌握圓的一般方程及其特點.
(2)能將圓的一般方程轉化為圓的標準方程,從而求出圓心和半徑.
(3)能用待定系數法,由已知條件求出圓的一般方程.
(4)通過本節課學習,進一步掌握配方法和待定系數法.
教學重點:(1)用配方法,把圓的一般方程轉化成標準方程,求出圓心和半徑.
(2)用待定系數法求圓的方程.
教學難點:圓的一般方程特點的研究.
教學用具:計算機.
教學方法:啟發引導法,討論法.
教學過程:
【引入】
前邊已經學過了圓的標準方程
把它展開得
任何圓的方程都可以通過展開化成形如
①
的方程
【問題1】
形如①的方程的曲線是否都是圓?
師生共同討論分析:
如果①表示圓,那么它一定是某個圓的標準方程展開整理得到的.我們把它再寫成原來的形式不就可以看出來了嗎?運用配方法,得
②
顯然②是不是圓方程與 是什么樣的數密切相關,具體如下:
(1)當 時,②表示以 為圓心、以 為半徑的圓;
(2)當 時,②表示一個點 ;
(3)當 時,②不表示任何曲線.
總結:任意形如①的方程可能表示一個圓,也可能表示一個點,還有可能什么也不表示.
圓的一般方程的定義:
當 時,①表示以 為圓心、以 為半徑的圓,
此時①稱作圓的一般方程.
即稱形如 的方程為圓的一般方程.
【問題2】圓的一般方程的特點,與圓的標準方程的異同.
(1) 和 的系數相同,都不為0.
(2)沒有形如 的二次項.
圓的一般方程與一般的二元二次方程
③
相比較,上述(1)、(2)兩個條件僅是③表示圓的必要條件,而不是充分條件或充要條件.
圓的一般方程與圓的標準方程各有千秋:
(1)圓的標準方程帶有明顯的幾何的影子,圓心和半徑一目了然.
(2)圓的一般方程表現出明顯的代數的形式與結構,更適合方程理論的運用.
【實例分析】
例1:下列方程各表示什么圖形.
(1) ;
(2) ;
(3) .
學生演算并回答
(1)表示點(0,0);
(2)配方得 ,表示以 為圓心,3為半徑的圓;
(3)配方得 ,當 、 同時為0時,表示原點(0,0);當 、 不同時為0時,表示以 為圓心, 為半徑的圓.
例2:求過三點 , , 的圓的方程,并求出圓心坐標和半徑.
分析:由于學習了圓的標準方程和圓的一般方程,那么本題既可以用標準方程求解,也可以用一般方程求解.
解:設圓的方程為
因為 、 、 三點在圓上,則有
解得: , ,
所求圓的方程為
可化為
圓心為 ,半徑為5.
請同學們再用標準方程求解,比較兩種解法的區別.
【概括總結】通過學生討論,師生共同總結:
(1)求圓的方程多用待定系數法.其步驟為:由題意設方程(標準方程或一般方程);根據條件列出關于待定系數的方程組;解方程組求出系數,寫出方程.
(2)如何選用圓的標準方程和圓的一般方程.一般地,易求圓心和半徑時,選用標準方程;如果給出圓上已知點,可選用一般方程.
下面再看一個問題:
例3: 經過點 作圓 的割線,交圓 于 、 兩點,求線段 的中點 的軌跡.
解:圓 的方程可化為 ,其圓心為 ,半徑為2.設 是軌跡上任意一點.
∵
∴
即
化簡得
點 在曲線上,并且曲線為圓 內部的一段圓弧.
【練習鞏固】
(1)方程 表示的曲線是以 為圓心,4為半徑的圓.求 、 、 的值.(結果為4,-6,-3)
(2)求經過三點 、 、 的圓的方程.
分析:用圓的一般方程,代入點的坐標,解方程組得圓的方程為 .
(3)課本第79頁練習1,2.
【小結】師生共同總結:
(1)圓的一般方程及其特點.
(2)用配方法化圓的一般方程為圓的標準方程,求圓心坐標和半徑.
(3)用待定系數法求圓的方程.
【作業】課本第82頁5,6,7,8.
高中數學教案通用模板篇12
教學目標
(1)正確理解排列的意義。能利用樹形圖寫出簡單問題的所有排列;
(2)了解排列和排列數的意義,能根據具體的問題,寫出符合要求的排列;
(3)掌握排列數公式,并能根據具體的問題,寫出符合要求的排列數;
(4)會分析與數字有關的排列問題,培養學生的抽象能力和邏輯思維能力;
(5)通過對排列應用問題的學習,讓學生通過對具體事例的觀察、歸納中找出規律,得出結論,以培養學生嚴謹的學習態度。
教學建議
一、知識結構
二、重點難點分析
本小節的重點是排列的定義、排列數及排列數的公式,并運用這個公式去解決有關排列數的應用問題.難點是導出排列數的公式和解有關排列的應用題.突破重點、難點的關鍵是對加法原理和乘法原理的掌握和運用,并將這兩個原理的基本思想方法貫穿在解決排列應用問題當中.
從n個不同元素中任取m(m≤n)個元素,按照一定的順序排成一列,稱為從n個不同元素中任取m個元素的一個排列.因此,兩個相同排列,當且僅當他們的元素完全相同,并且元素的排列順序也完全相同.排列數是指從n個不同元素中任取m(m≤n)個元素的所有不同排列的種數,只要弄清相同排列、不同排列,才有可能計算相應的排列數.排列與排列數是兩個概念,前者是具有m個元素的排列,后者是這種排列的不同種數.從集合的角度看,從n個元素的有限集中取出m個組成的有序集,相當于一個排列,而這種有序集的個數,就是相應的排列數.
公式推導要注意緊扣乘法原理,借助框圖的直視解釋來講解.要重點分析好 的推導.
排列的應用題是本節教材的難點,通過本節例題的分析,應注意培養學生解決應用問題的能力.
在分析應用題的解法時,教材上先畫出框圖,然后分析逐次填入時的種數,這樣解釋比較直觀,教學上要充分利用,要求學生作題時也應盡量采用.
在教學排列應用題時,開始應要求學生寫解法要有簡要的文字說明,防止單純的只寫一個排列數,這樣可以培養學生的分析問題的能力,在基本掌握之后,可以逐漸地不作這方面的要求.
三、教法建議
①在講解排列數的概念時,要注意區分“排列數”與“一個排列”這兩個概念.一個排列是指“從n個不同元素中,任取出m個元素,按照一定的順序擺成一排”,它不是一個數,而是具體的一件事;排列數是指“從n個不同元素中取出m個元素的所有排列的個數”,它是一個數.例如,從3個元素a,b,c中每次取出2個元素,按照一定的順序排成一排,有如下幾種:
ab,ac,ba,bc,ca,cb,
其中每一種都叫一個排列,共有6種,而數字6就是排列數,符號 表示排列數.
②排列的定義中包含兩個基本內容,一是“取出元素”,二是“按一定順序排列”.
從定義知,只有當元素完全相同,并且元素排列的順序也完全相同時,才是同一個排列,元素完全不同,或元素部分相同或元素完全相同而順序不同的排列,都不是同一排列。叫不同排列.
在定義中“一定順序”就是說與位置有關,在實際問題中,要由具體問題的性質和條件來決定,這一點要特別注意,這也是與后面學習的組合的根本區別.
在排列的定義中 ,如果 有的書上叫選排列,如果 ,此時叫全排列.
要特別注意,不加特殊說明,本章不研究重復排列問題.
③關于排列數公式的推導的教學.公式推導要注意緊扣乘法原理,借助框圖的直視解釋來講解.課本上用的是不完全歸納法,先推導 , ,…,再推廣到 ,這樣由特殊到一般,由具體到抽象的講法,學生是不難理解的.
導出公式 后要分析這個公式的構成特點,以便幫助學生正確地記憶公式,防止學生在“n”、“m”比較復雜的時候把公式寫錯.這個公式的特點可見課本第229頁的一段話:“其中,公式右邊第一個因數是n,后面每個因數都比它前面一個因數少1,最后一個因數是 ,共m個因數相乘.”這實際是講三個特點:第一個因數是什么?最后一個因數是什么?一共有多少個連續的自然數相乘.
公式 是在引出全排列數公式 后,將排列數公式變形后得到的公式.對這個公式指出兩點:(1)在一般情況下,要計算具體的排列數的值,常用前一個公式,而要對含有字母的排列數的式子進行變形或作有關的論證,要用到這個公式,教材中第230頁例2就是用這個公式證明的問題;(2)為使這個公式在 時也能成立,規定 ,如同 時 一樣,是一種規定,因此,不能按階乘數的原意作解釋.
④建議應充分利用樹形圖對問題進行分析,這樣比較直觀,便于理解.
⑤學生在開始做排列應用題的作業時,應要求他們寫出解法的簡要說明,而不能只列出算式、得出答數,這樣有利于學生得更加扎實.隨著學生解題熟練程度的提高,可以逐步降低這種要求.
高中數學教案通用模板篇13
1、教學目標:
一、借助單位圓理解任意角的三角函數的定義。
二、根據三角函數的定義,能夠判斷三角函數值的符號。
三、通過學生積極參與知識的"發現"與"形成"的過程,培養合情猜測的能力,從中感悟數學概念的嚴謹性與科學性。
四、讓學生在任意角三角函數概念的形成過程中,體會函數思想,體會數形結合思想。
2、教學重點與難點:
重點:任意角的正弦、余弦、正切的定義;三角函數值的符號。
難點:任意角的三角函數概念的建構過程。
授課過程:
一、引入
在我們的現實世界中的許多運動變化都有循環往復、周而復始的現象,這種變化規律稱為周期性。如何用數學的方法來刻畫這種變化?從這節課開始,我們要來學習刻畫這種規律的數學模型之一――三角函數。
二、創設情境
三角函數是與角有關的函數,在學習任意角概念時,我們知道在直角坐標系中研究角,可以給學習帶來許多方便,比如我們可以根據角終邊的位置把它們進行歸類,現在大家考慮:若在直角坐標系中來研究銳角,則銳角三角函數又可怎樣定義呢?
學生情況估計:學生可能會提出兩種定義的方式,一種定義為邊之比,另一種定義在比值中引入了終邊上的一點P的坐標。
問題:
1、銳角三角函數能否表示成第二種比值方式?
2、點P能否取在終邊上的其它位置?為什么?
3、點P在哪個位置,比值會更簡潔?(引出單位圓的定義)。指出sina=mP的函數依舊表示一個比值,不過其分母為1而已。
練習:計算的各三角函數值。
三、任意角的三角函數的定義
角的概念已經推廣道了任意角,那么三角函數的定義在任意角的范圍里改怎么定義呢?
嘗試:根據銳角三角函數的定義,你能嘗試著給出任意角三角函數的定義嗎?
評價學生給出的定義。給出任意角三角函數的定義。
四、解析任意角三角函數的定義
三角函數首先是函數。你能從函數觀點解析三角函數嗎?(定義域)
對于確定的角a,上面三個函數值都是唯一確定的,所以,正弦、余弦、正切都是以角為自變量,以單位圓上點的坐標或坐標的比值為函數值的函數,我們將它們統稱為三角函數。由于角的集合和實數集之間可以建立一一對應的關系,三角函數可以看成是自變量為實數的函數。
五、三角函數的應用。
1、已知角,求a的三角函數值。
2、已知角a終邊上的一點P(-3,-4),求各三角函數值。
以上兩道書上的例題,讓學生自習看書,學生看書的同時,老師提出問題:
1、已知角如何求三角函數值?
2、利用角a的終邊上任意一點的坐標也可以定義三角函數,你能給出這種定義嗎?(這種定義與課本中給出的定義各有什么特點?)
3、變式:已知角a終邊上點P(-3b,-4b),(b0),求角a的各三角函數值。
4、探究:三角函數的值在各象限的符號。
六、小結及作業
教案設計說明:
新教材的教學理念之一是讓學生去體驗新知識的發生過程,這節《任意角三角函數》的教案,主要圍繞這一點來設計。
首先,角的概念推廣了,那么銳角三角函數的定義是否也該推廣到任意角的三角函數的定義呢?通過這個問題,讓學生體會到新知識的發生是可能的,自然的。
其次,到底應該怎樣去合理定義任意角的三角函數呢?讓學生提出自己的想法,同時讓學生去辨證這個想法是否是科學的?因為一個概念是嚴謹的,科學的,不能隨心所欲地編造,必須去論證它的合理性,至少這種概念不能和銳角三角函數的定義有所沖突。在這個立-破的過程中,讓學生去體驗一個新的數學概念可能是如何形成,在形成的過程中可以從哪些角度加以科學的辯思。這樣也有助于學生對任意角三角函數概念的理解。
再次,讓學生充分體會在任意角三角函數定義的推廣中,是如何將直角三角形這個"形"的問題,轉換到直角坐標系下點的坐標這個"數"的過程的。培養數形結合的思想。
高中數學教案通用模板篇14
第二教時教材:
1、復習
2、《課課練》及《教學與測試》中的有關內容目的:復習集合的概念;鞏固已經學過的內容,并加深對集合的理解。
過程:
一、復習:(結合提問)
1.集合的概念含集合三要素
2.集合的表示、符號、常用數集、列舉法、描述法
3.集合的分類:有限集、無限集、空集、單元集、二元集
4.關于“屬于”的概念
二、例一用適當的方法表示下列集合:
1.平方后仍等于原數的數集解:{x x2=x}={0,1}
2.比2大3的數的集合解:{x x=2+3}={5}
3.不等式x2-x-6<0的整數解集解:{xZx2-x-6<0}={xZ-2<x<3}={-1,0,1,2}
4.過原點的直線的集合解:{(x,y)y=kx}
5.方程4x2+9y2-4x+12y+5=0的解集解:{(x,y)4x2+9y2-4x+12y+5=0}={(x,y)(2x-1)2+(3y+2)2=0}={(x,y)(1/2,-2/3)}
6.使函數y=有意義的實數x的集合解:{x x2+x-60}={x x2且x3,xR}
三、處理蘇大《教學與測試》第一課含思考題、備用題
四、處理《課課練》
五、作業《教學與測試》第一課練習題
高中數學教案通用模板篇15
教學目標:
1、通過觀察、猜測、操作等活動,找出最簡單的事物的排列數和組合數。
2、經歷探索簡單事物排列與組合規律的過程。
3、培養學生有序地全面地思考問題的意識。
4、感受數學與生活的緊密聯系,培養學生學習數學的興趣和用數學方法解決問題的意識。
教學重點:經歷探索簡單事物排列與組合規律的過程。
教學難點:初步理解簡單事物排列與組合的不同。
教具準備:乒乓球、衣服圖片、紙箱、每組三張數字卡片、吹塑紙數字卡片。
一、情境導入,展開教學
今天,王老師要帶大家去“數學廣角”里做游戲,可是,我把游戲要用的材料都放在這個密碼包里。你們想解開密碼取出游戲材料嗎?(想)我給大家提供解碼的3個信息。
1、好,接下來老師提供解碼的第一個信息:密碼是一個兩位數。(學生在兩位數里猜)(你們猜的對不對呢?請聽第二個解碼信息)
2、下面,提供解碼的第二個信息:密碼是由2和7組成的(學生說出27和72)。能說說看你是怎么想的嗎?
3、下面,提供解碼的第三個信息:剛才說了密碼可能是27也可能是72。其實這個密碼和老師的年齡有關。哪個才是真正的密碼是?(學生說出是27)到底是不是27呢?請看(教師出示密碼)。真的是27,恭喜大家解碼成功!
二、多種活動,體驗新知
1、感知排列
師:請小朋友先到“數字宮”做個排數字游戲,好嗎?這有兩張數字卡片(1、2)(老師從密碼包里拿出),你能擺出幾個兩位數?(用數字卡擺一擺)
生:我擺了兩個不同的數字12和21。(教師板書)
師:同學們想得真好。我又請來了一位好朋友數字3,現在有三個數字1、2、3,讓大家寫兩位數,你們不會了吧?(會)別吹牛!(真的會)好,下面大家分組合作,組長記錄。看看你們能夠寫出幾個不同的兩位數,注意不要重復,如果你覺得直接寫有困難的話可以借助手中的數字卡片擺一擺。好,開始。
學生活動教師巡視并參與學生活動。(學生所寫的個數可能不一樣,有多有少,找幾份重復的或個數少的展示。)哪組同學來給大家匯報一下。(教師板書結果。)有沒有需要補充的呀?
2、探討排列方法。
有的小組擺出4個不同的兩位數,有的小組擺出6個不同的兩位數,有什么好的方法能保證既不重復,也不漏掉數呢?還請大家分組討論??匆豢茨慕M同學的方法最好?。ㄐ〗M討論,分組交流,學生總結方法。)哪組同學來給大家匯報一下你們的想法?
方法1:我擺出12,然后再顛倒就是21,再擺23,顛倒后就是32,再擺13,顛倒后就是31,一共可以擺出6個兩位數。
方法2:我先把數字1放在十位上,然后把數字2和3分別放在個位組成12和13;我再把數字2放在十位上,然后把數字1和3分別放在個位組成21和23;我再把數字3放在十位上,然后把數字1和2分別放在個位上組成31和32,一共擺出了6個兩位數。3、老師和學生共同評議方法:讓學生選擇自己喜歡的方法再擺一擺,學生試著總結。(如果學生說不出方法2,老師就直接告訴學生)
3、感知組合。
①師:你們真是一群善于動腦的好孩子。來,咱們握握手,祝賀祝賀!加油!123
②提出問題:從大家剛才握手,老師想出了一個數學問題:三個小朋友,每兩個人只能握一次手,一共要握幾次手呢?想一想!
生1:6次!
生2:4次!
師:到底是幾次呢?請小組長作裁判,小組內的三個同學,試一試,到底是幾次?
③學生匯報表演。小組長指揮說明。哪組同學愿意給大家表演一下?他們握手,咱們一起來數吧!教師引導學生一起數握手的次數。(注意握過小朋友一邊休息)
④師問:A和B握手了嗎?B和A握手了嗎?這算一次還是兩次呀?
⑤小結:看來,兩個人相互握手,只能算一次,和順序無關。剛才排數,交換數的位置,就變成另一個數了,這和順序有關。
三、反饋練習,加深理解
下面大家看這是什么呀?(老師從密碼包里拿出一個乒乓球)(乒乓球)這個是我昨天專門買來的。定價5角。當時我的口袋里有1張5角的、2張2角,還有5個1角的硬幣。(師出示所述人民幣)大家想一想我有多少種方法付給老板錢呢?(老師引導學生有序的說出付錢的四種方法)
有了乒乓球,老師就可以教大家打乒乓球了。不過我要先考考大家。每兩個人進行一場比賽,三個人要比幾場?(指名答。)好的,大家真能干。下課老師就教你們的乒乓球好嗎?(好)。
今天是幾月幾日?(12月1日)哦!快到元旦了。小明準備在數學廣角舉辦的元旦晚會上露一手。來一個時裝表演。他準備了4件衣服(教師貼出2件上衣和2件褲子),請你幫他設計一下,有幾種穿法?誰來說一說?(指名答出四種穿法并演示)
大家感覺一下只有4種穿法,是不是有點少了呀?(是)小明也和大家想到一塊去了。于是他又用自己的零花錢買了一條黑褲子(貼出)。大家再想一想現在一共有多少種穿法了呀?(6種)除了剛才的4種,還有哪2種,誰來說一說?(生答完后,老師再引導學生有序地回憶6種穿法)同學們真聰明。我在這里代表小明向大家說一聲:謝謝了!(沒關系)。對了。到時候我們一定要去看小明的精彩表演!好不好?(好)
四、游戲活動,拓展應用
1、老師看大家學得這么開心,我們來做個抽獎游戲,想參加嗎?每個小朋友都有中獎的機會哦。
①教師出示4個號球:老師這這里有四個號球:2、5、7、8。
②什么樣的號碼能中獎呢?我給你們透露點信息:中獎號碼就是從這4個數中選出的兩個數組成的兩位數。猜猜,什么號碼可能中獎?這個號碼可能中獎。再猜?你這個號碼也可能中獎。看來,可能中獎的號碼有很多個。有什么好辦法肯定能中獎?(把你認為能中獎的號碼都寫出來吧)(把用這四個數能組成的所有兩位數都寫出來,教師巡視,有的孩子寫出來8個兩位數,她還在繼續寫,看來不止8個。你寫得越多你中獎的可能就越大)
③寫好了嗎?大家推舉一個人來摸獎吧。老師來當公證員行不行?學生先摸出一個球。中獎號碼的最前面一個數出來了,是2,那中獎號碼可能是?25、27、28。再摸一個球。中獎號碼是?
④你中獎了嗎?把你寫出的這個數圈出來。同桌互相看看,如果你同位中獎了,請你給他畫一面小紅旗。
⑤出示所有結果:孩子們,你剛才一共寫出了多少個兩位數?用2、5、7、8能組成的兩位數究竟有多少個呢?咱們用剛才先固定最前面一位數的辦法把這些數都排出來吧!老師寫,你們說,好嗎?
2、老師給今天這節課表現最好的三位同學一張合影,請同學們想一想,三個人站成一行,一共有多少種不同的排法?(指名答,教師總結)
這種排法剛才有沒有呀?我也糊涂了。怎樣才能搞清楚呢?對了,我們也可以用剛才先固定最前面一位數的方法來排一排。(教師引導學生有順序的排一排)這樣有順序的排一下,我們都清楚了。看來我們以后,不管在生活和學習中,做什么事情,想什么問題都要有順序的思考,這樣才能考慮全面。其實生活中有許多有趣的數學問題,不管有多難,只要大家肯動腦筋,就一定能解決。對不對?(對)
五、全課總結,升華情感
在數學廣角中還有許多地方等著大家去游玩,由于時間關系,今天我們大家就玩到這里。今天你這節課最高興的是什么事?