教育巴巴 > 初中教案 > 八年級教案 > 政治教案 >

高中數學教案大全

時間: 啟權 政治教案

進入高中后,很多新生有這樣的心理落差,比自己成績優秀的大有人在,很少有人注意到自己的存在,心理因此失衡,這是正常心理,但是應盡快進入學習狀態。下面是由小編為大家整理的“高中數學教案大全”,希望對您的工作和生活有所幫助。

高中數學教案大全

高中數學教案大全篇1

一:【課前預習】

(一):【知識梳理】

1.直角三角形的邊角關系(如圖)

(1)邊的關系(勾股定理):AC2+BC2=AB2;

(2)角的關系:B=

(3)邊角關系:

①:

②:銳角三角函數:

A的正弦= ;

A的余弦= ,

A的正切=

注:三角函數值是一個比值.

2.特殊角的三角函數值.

3.三角函數的關系

(1) 互為余角的三角函數關系.

sin(90○-A)=cosA, cos(90○-A)=sin A tan(90○-A)= cotA

(2) 同角的三角函數關系.

平方關系:sin2 A+cos2A=l

4.三角函數的大小比較

①正弦、正切是增函數.三角函數值隨角的增大而增大,隨角的減小而減小.

②余弦是減函數.三角函數值隨角的增大而減小,隨角的減小而增大。

(二):【課前練習】

1.等腰直角三角形一個銳角的余弦為( )

A. D.l

2.點M(tan60,-cos60)關于x軸的對稱點M的坐標是( )

3.在 △ABC中,已知C=90,sinB=0.6,則cosA的值是( )

4.已知A為銳角,且cosA0.5,那么( )

A.060 B.6090 C.030 D.3090

二:【經典考題剖析】

1.如圖,在Rt△ABC中,C=90,A=45,點D在AC上,BDC=60,AD=l,求BD、DC的長.

2.先化簡,再求其值, 其中x=tan45-cos30

3. 計算:①sin248○+ sin242○-tan44○tan45○tan 46○ ②cos 255○+ cos235○

4.比較大小(在空格處填寫或或=)

若=45○,則sin________cos

若45○,則sin cos

若45,則 sin cos.

5.⑴如圖①、②銳角的正弦值和余弦值都隨著銳角的確定而確定,變化而變化,試探索隨著銳角度數的增大,它的正弦值和余弦值變化的規律;

⑵根據你探索到的規律,試比較18○、34○、50○、61○、88○這些銳角的正弦值的大小和余弦值的大小.

三:【課后訓練】

1. 2sin60-cos30tan45的結果為( )

A. D.0

2.在△ABC中,A為銳角,已知 cos(90-A)= ,sin(90-B)= ,則△ABC一定是( )

A.銳角三角形;B.直角三角形;C.鈍角三角形;D.等腰三角形

3.如圖,在平面直角坐標系中,已知A(3,0)點B(0,-4),則cosOAB等于__________

4.cos2+sin242○ =1,則銳角=______.

5.在下列不等式中,錯誤的是( )

A.sin45○sin30○;B.cos60○tan30○;D.cot30○

6.如圖,在△ABC中,AC=3,BC=4,AB=5,則tanB的值是

7.如圖所示,在菱形ABCD中,AEBC于 E點,EC=1,B=30,求菱形ABCD的周長.

8.如圖所示,在△ABC中,ACB=90,BC=6,AC=8 ,CDAB,求:①sinACD 的值;②tanBCD的值

9.如圖 ,某風景區的湖心島有一涼亭A,其正東方向有一棵大樹B,小明想測量A/B之間的距離,他從湖邊的C處測得A在北偏西45方向上,測得B在北偏東32方向上,且量得B、C之間的距離為100米,根據上述測量結果,請你幫小明計算A山之間的距離是多少?(結果精確至1米.參考數據:sin32○0.5299,cos32○0.8480)

10.某住宅小區修了一個塔形建筑物AB,如圖所示,在與建筑物底部同一水平線的C處,測得點A的仰角為45,然后向塔方向前進8米到達D處,在D處測得點A的仰角為60,求建筑物的高度.(精確0.1米)

高中數學教案大全篇2

一、指導思想:

使學生在九年義務教育數學課程的基礎上,進一步提高作為未來公民所必要的數學素養,以滿足個人發展與社會進步的需要。具體目標如下。

1。獲得必要的數學基礎知識和基本技能,理解基本的數學概念、數學結論的本質,了解概念、結論等產生的背景、應用,體會其中所蘊涵的數學思想和方法,以及它們在后續學習中的作用。通過不同形式的自主學習、探究活動,體驗數學發現和創造的歷程。

2。提高空間想像、抽象概括、推理論證、運算求解、數據處理等基本能力。

3。提高數學地提出、分析和解決問題(包括簡單的實際問題)的能力,數學表達和交流的能力,發展獨立獲取數學知識的能力。

4。發展數學應用意識和創新意識,力求對現實世界中蘊涵的一些數學模式進行思考和作出判斷。

5。提高學習數學的興趣,樹立學好數學的信心,形成鍥而不舍的鉆研精神和科學態度。

6。具有一定的數學視野,逐步認識數學的科學價值、應用價值和文化價值,形成批判性的思維習慣,崇尚數學的理性精神,體會數學的美學意義,從而進一步樹立辯證唯物主義和歷史唯物主義世界觀。

二、教材特點:

我們所使用的教材是人教版《普通高中課程標準實驗教科書數學(a版)》,它在堅持我國數學教育優良傳統的前提下,認真處理繼承,借簽,發展,創新之間的關系,體現基礎性,時代性,典型性和可接受性等到,具有如下特點:

1。親和力:以生動活潑的呈現方式,激發興趣和美感,引發學習激情。

2。問題性:以恰時恰點的問題引導數學活動,培養問題意識,孕育創新精神。

3。科學性與思想性:通過不同數學內容的聯系與啟發,強調類比,推廣,特殊化,化歸等思想方法的運用,學習數學地思考問題的方式,提高數學思維能力,培育理性精神。

4。時代性與應用性:以具有時代性和現實感的素材創設情境,加強數學活動,發展應用意識。

三、教法分析:

1。選取與內容密切相關的,典型的,豐富的和學生熟悉的素材,用生動活潑的語言,創設能夠體現數學的概念和結論,數學的思想和方法,以及數學應用的學習情境,使學生產生對數學的親切感,引發學生看個究竟的沖動,以達到培養其興趣的目的。

2。通過觀察,思考,探究等欄目,引發學生的思考和探索活動,切實改進學生的學習方式。

3。在教學中強調類比,推廣,特殊化,化歸等數學思想方法,盡可能養成其邏輯思維的習慣。

四、學情分析:

1、基本情況:12班共人,男生人,女生人;本班相對而言,數學尖子約人,中上等生約人,中等生約人,中下生約人,后進生約人。

14班共人,男生人,女生人;本班相對而言,數學尖子約人,中上等生約人,中等生約人,中下生約人,后進生約人。

2、兩個班均屬普高班,學習情況良好,但學生自覺性差,自我控制能力弱,因此在教學中需時時提醒學生,培養其自覺性。班級存在的最大問題是計算能力太差,學生不喜歡去算題,嫌麻煩,只注重思路,因此在以后的教學中,重點在于培養學生的計算能力,同時要進一步提高其思維能力。同時,由于初中課改的原因,高中教材與初中教材銜接力度不夠,需在新授時適機補充一些內容。因此時間上可能仍然吃緊。同時,其底子薄弱,因此在教學時只能注重基礎再基礎,爭取每一堂課落實一個知識點,掌握一個知識點。

五、教學措施:

1、激發學生的學習興趣。由數學活動、故事、吸引人的課、合理的要求、師生談話等途徑樹立學生的學習信心,提高學習興趣,在主觀作用下上升和進步。

2、注意從實例出發,從感性提高到理性;注意運用對比的方法,反復比較相近的概念;注意結合直觀圖形,說明抽象的知識;注意從已有的知識出發,啟發學生思考。

3、加強培養學生的邏輯思維能力就解決實際問題的能力,以及培養提高學生的自學能力,養成善于分析問題的習慣,進行辨證唯物主義教育。

4、抓住公式的推導和內在聯系;加強復習檢查工作;抓住典型例題的分析,講清解題的關鍵和基本方法,注重提高學生分析問題的能力。

5、自始至終貫徹教學四環節,針對不同的教材內容選擇不同教法。

6、重視數學應用意識及應用能力的培養。

高中數學教案大全篇3

1.1 集合含義及其表示

教學目標:理解集合的概念;掌握集合的三種表示方法,理解集合中元素的三性及元素與集合的關系;掌握有關符號及術語。

教學過程:

一、閱讀下列語句:

1) 全體自然數0,1,2,3,4,5,

2) 代數式 .

3) 拋物線 上所有的點

4) 今年本校高一(1)(或(2))班的全體學生

5) 本校實驗室的所有天平

6) 本班級全體高個子同學

7) 著名的科學家

上述每組語句所描述的對象是否是確定的?

二、1)集合:

2)集合的元素:

3)集合按元素的個數分,可分為1)__________2)_________

三、集合中元素的三個性質:

1)___________2)___________3)_____________

四、元素與集合的關系:1)____________2)____________

五、特殊數集專用記號:

1)非負整數集(或自然數集)______2)正整數集_____3)整數集_______

4)有理數集______5)實數集_____ 6)空集____

六、集合的表示方法:

1)

2)

3)

七、例題講解:

例1、 中三個元素可構成某一個三角形的三邊長,那么此三角形一定不是 ( )

A,直角三角形 B,銳角三角形 C,鈍角三角形 D,等腰三角形

例2、用適當的方法表示下列集合,然后說出它們是有限集還是無限集?

1)地球上的四大洋構成的集合;

2)函數 的全體 值的集合;

3)函數 的全體自變量 的集合;

4)方程組 解的集合;

5)方程 解的集合;

6)不等式 的解的集合;

7)所有大于0且小于10的奇數組成的集合;

8)所有正偶數組成的集合;

例3、用符號 或 填空:

1) ______Q ,0_____N, _____Z,0_____

2) ______ , _____

3)3_____ ,

4)設 , , 則

例4、用列舉法表示下列集合;

1.

2.

3.

4.

例5、用描述法表示下列集合

1.所有被3整除的數

2.圖中陰影部分點(含邊界)的坐標的集合

課堂練習:

例6、設含有三個實數的集合既可以表示為 ,也可以表示為 ,則 的值等于___________

例7、已知: ,若 中元素至多只有一個,求 的取值范圍。

思考題:數集A滿足:若 ,則 ,證明1):若2 ,則集合中還有另外兩個元素;2)若 則集合A不可能是單元素集合。

小結:

作業 班級 姓名 學號

1. 下列集合中,表示同一個集合的是 ( )

A . M= ,N= B. M= ,N=

C. M= ,N= D. M= ,N=

2. M= ,X= ,Y= , , .則 ( )

A . B. C. D.

3. 方程組 的解集是____________________.

4. 在(1)難解的題目,(2)方程 在實數集內的解,(3)直角坐標平面內第四象限的一些點,(4)很多多項式。能夠組成集合的序號是________________.

5. 設集合 A= , B= ,

C= , D= ,E= 。

其中有限集的個數是____________.

6. 設 ,則集合 中所有元素的和為

7. 設x,y,z都是非零實數,則用列舉法將 所有可能的值組成的集合表示為

8. 已知f(x)=x2-ax+b,(a,b R),A= ,B= ,

若A= ,試用列舉法表示集合B=

9. 把下列集合用另一種方法表示出來:

(1) (2)

(3) (4)

10. 設a,b為整數,把形如a+b 的一切數構成的集合記為M,設 ,試判斷x+y,x-y,xy是否屬于M,說明理由。

11. 已知集合A=

(1) 若A中只有一個元素,求a的值,并求出這個元素;

(2) 若A中至多只有一個元素,求a的取值集合。

12.若-3 ,求實數a的值。

【總結】20__年已經到來,新的一年數學網會為您整理更多更好的文章,希望本文高一數學教案:集合含義及其表示能給您帶來幫助!

高中數學教案大全篇4

【學習目標】

1、感受數學探索的成功感,提高學習數學的興趣;

2、經歷誘導公式的探索過程,感悟由未知到已知、復雜到簡單的數學轉化思想。

3、能借助單位圓的對稱性理解記憶誘導公式,能用誘導公式進行簡單應用。

【學習重點】三角函數的誘導公式的理解與應用

【學習難點】誘導公式的推導及靈活運用

【知識鏈接】(1)單位圓中任意角α的正弦、余弦的定義

(2)對稱性:已知點P(x,),那么,點P關于x軸、軸、原點對稱的點坐標

【學習過程】

一、預習自學

閱讀書第19頁——20頁內容,通過對-α、π-α、π+α、2π-α、α的終邊與單位圓的交點的對稱性規律的探究,結合單位圓中任意角的正弦、余弦的'定義,從中自我發現歸納出三角函數的誘導公式,并寫出下列關系:

(1)- 407[導學案]4.4單位圓的對稱性與誘導公式與 407[導學案]4.4單位圓的對稱性與誘導公式 的正弦函數、余弦函數關系

(2)角407[導學案]4.4單位圓的對稱性與誘導公式與角 407[導學案]4.4單位圓的對稱性與誘導公式 的正弦函數、余弦函數關系

(3)角 407[導學案]4.4單位圓的對稱性與誘導公式與角 407[導學案]4.4單位圓的對稱性與誘導公式 的正弦函數、余弦函數關系

(4)角 407[導學案]4.4單位圓的對稱性與誘導公式與角 407[導學案]4.4單位圓的對稱性與誘導公式 的正弦函數、余弦函數關系

二、合作探究

探究1、求下列函數值,思考你用到了哪些三角函數誘導公式?試總結一下求任意角的三角函數值的過程與方法。

(1) 407[導學案]4.4單位圓的對稱性與誘導公式 (2) 407[導學案]4.4單位圓的對稱性與誘導公式 (3)sin(-1650°);

探究2: 化簡: 407[導學案]4.4單位圓的對稱性與誘導公式 407[導學案]4.4單位圓的對稱性與誘導公式(先逐個化簡)

探究3、利用單位圓求滿足 407[導學案]4.4單位圓的對稱性與誘導公式 的角的集合。

三、學習小結

(1)你能說說化任意角的正(余)弦函數為銳角正(余)弦函數的一般思路嗎?

(2)本節學習涉及到什么數學思想方法?

(3)我的疑惑有

【達標檢測】

1、在單位圓中,角α的終邊與單位圓交于點P(- 407[導學案]4.4單位圓的對稱性與誘導公式 , 407[導學案]4.4單位圓的對稱性與誘導公式 ),

則sin(-α)= ;cs(α±π)= ;cs(π-α)=

2.求下列函數值:

(1)sin( 407[導學案]4.4單位圓的對稱性與誘導公式 )= ; (2) cs210&rd;=

3、若csα=-1/2,則α的集合S=

高中數學教案大全篇5

知識結構

重難點分析

本節的重點是二次根式的化簡.本章自始至終圍繞著二次根式的化簡與計算進行,而二次根式的化簡不但涉及到前面學習過的算術平方根、二次根式等概念與二次根式的運算性質,還要牽涉到絕對值以及各種非負數、因式分解等知識,在應用中常常需要對字母進行分類討論.

本節的難點是正確理解與應用公式.這個公式的表達形式對學生來說,比較生疏,而實際運用時,則要牽涉到對字母取值范圍的討論,學生往往容易出現錯誤.

教法建議

1.性質的引入方法很多,以下2種比較常用:

(1)設計問題引導啟發:由設計的問題

1)、各等于什么?

2)、各等于什么?

啟發、引導學生猜想出

(2)從算術平方根的意義引入.

2.性質的鞏固有兩個方面需要注意:

(1)注意與性質進行對比,可出幾道類型不同的題進行比較;

(2)學生初次接觸這種形式的表示方式,在教學時要注意細分層次加以鞏固,如單個數字,單個字母,單項式,可進行因式分解的多項式,等等.

(第1課時)

一、教學目標

1.掌握二次根式的性質

2.能夠利用二次根式的性質化簡二次根式

3.通過本節的學習滲透分類討論的數學思想和方法

二、教學設計

對比、歸納、總結

三、重點和難點

1.重點:理解并掌握二次根式的性質

2.難點:理解式子中的可以取任意實數,并能根據字母的取值范圍正確地化簡有關的二次根式.

四、課時安排

1課時

五、教B具學具準備

投影儀、膠片、多媒體

六、師生互動活動設計

復習對比,歸納整理,應用提高,以學生活動為主

七、教學過程

一、導入新課

我們知道,式子表示非負數的算術平方根.

問:式子的意義是什么?被開方數中的表示的是什么數?

答:式子表示非負數的算術平方根,即,且,從而可以取任意實數.

二、新課

計算下列各題,并回答以下問題:

(1);(2);(3);

1.各小題中被開方數的冪的底數都是什么數?

2.各小題的結果和相應的被開方數的冪的底數有什么關系?

3.用字母表示被開方數的冪的底數,將有怎樣的結論?并用語言敘述你的結論.

高中數學教案大全篇6

教學目標

1.理解等比數列的概念,掌握等比數列的通項公式,并能運用公式解決簡單的問題.

(1)正確理解等比數列的定義,了解公比的概念,明確一個數列是等比數列的限定條件,能根據定義判斷一個數列是等比數列,了解等比中項的概念;

(2)正確認識使用等比數列的表示法,能靈活運用通項公式求等比數列的首項、公比、項數及指定的項;

(3)通過通項公式認識等比數列的性質,能解決某些實際問題.

2.通過對等比數列的研究,逐步培養學生觀察、類比、歸納、猜想等思維品質.

3.通過對等比數列概念的歸納,進一步培養學生嚴密的思維習慣,以及實事求是的科學態度.

教學建議

教材分析

(1)知識結構

等比數列是另一個簡單常見的數列,研究內容可與等差數列類比,首先歸納出等比數列的定義,導出通項公式,進而研究圖像,又給出等比中項的概念,最后是通項公式的應用.

(2)重點、難點分析

教學重點是等比數列的定義和對通項公式的認識與應用,教學難點在于等比數列通項公式的推導和運用.

①與等差數列一樣,等比數列也是特殊的數列,二者有許多相同的性質,但也有明顯的區別,可根據定義與通項公式得出等比數列的特性,這些是教學的重點.

②雖然在等差數列的學習中曾接觸過不完全歸納法,但對學生來說仍然不熟悉;在推導過程中,需要學生有一定的觀察分析猜想能力;第一項是否成立又須補充說明,所以通項公式的推導是難點.

③對等差數列、等比數列的綜合研究離不開通項公式,因而通項公式的靈活運用既是重點又是難點.

教學建議

(1)建議本節課分兩課時,一節課為等比數列的概念,一節課為等比數列通項公式的應用.

(2)等比數列概念的引入,可給出幾個具體的例子,由學生概括這些數列的相同特征,從而得到等比數列的定義.也可將幾個等差數列和幾個等比數列混在一起給出,由學生將這些數列進行分類,有一種是按等差、等比來分的,由此對比地概括等比數列的定義.

(3)根據定義讓學生分析等比數列的公比不為0,以及每一項均不為0的特性,加深對概念的理解.

(4)對比等差數列的表示法,由學生歸納等比數列的各種表示法. 啟發學生用函數觀點認識通項公式,由通項公式的結構特征畫數列的圖象.

(5)由于有了等差數列的研究經驗,等比數列的研究完全可以放手讓學生自己解決,教師只需把握課堂的節奏,作為一節課的組織者出現.

(6)可讓學生相互出題,解題,講題,充分發揮學生的主體作用.

教學設計示例

課題:等比數列的概念

教學目標

1.通過教學使學生理解等比數列的概念,推導并掌握通項公式.

2.使學生進一步體會類比、歸納的思想,培養學生的觀察、概括能力.

3.培養學生勤于思考,實事求是的精神,及嚴謹的科學態度.

教學重點,難點

重點、難點是等比數列的定義的歸納及通項公式的推導.

教學用具

投影儀,多媒體軟件,電腦.

教學方法

討論、談話法.

教學過程

一、提出問題

給出以下幾組數列,將它們分類,說出分類標準.(幻燈片)

①-2,1,4,7,10,13,16,19,…

②8,16,32,64,128,256,…

③1,1,1,1,1,1,1,…

④243,81,27,9,3,1, , ,…

⑤31,29,27,25,23,21,19,…

⑥1,-1,1,-1,1,-1,1,-1,…

⑦1,-10,100,-1000,10000,-100000,…

⑧0,0,0,0,0,0,0,…

由學生發表意見(可能按項與項之間的關系分為遞增數列、遞減數列、常數數列、擺動數列,也可能分為等差、等比兩類),統一一種分法,其中②③④⑥⑦為有共同性質的一類數列(學生看不出③的情況也無妨,得出定義后再考察③是否為等比數列).

二、講解新課

請學生說出數列②③④⑥⑦的共同特性,教師指出實際生活中也有許多類似的例子,如變形蟲分裂問題.假設每經過一個單位時間每個變形蟲都分裂為兩個變形蟲,再假設開始有一個變形蟲,經過一個單位時間它分裂為兩個變形蟲,經過兩個單位時間就有了四個變形蟲,…,一直進行下去,記錄下每個單位時間的變形蟲個數得到了一列數 這個數列也具有前面的幾個數列的共同特性,這是我們將要研究的另一類數列——等比數列. (這里播放變形蟲分裂的多媒體軟件的第一步)

等比數列(板書)

1.等比數列的定義(板書)

根據等比數列與等差數列的名字的區別與聯系,嘗試給等比數列下定義.學生一般回答可能不夠完美,多數情況下,有了等差數列的基礎是可以由學生概括出來的.教師寫出等比數列的定義,標注出重點詞語.

請學生指出等比數列②③④⑥⑦各自的公比,并思考有無數列既是等差數列又是等比數列.學生通過觀察可以發現③是這樣的數列,教師再追問,還有沒有其他的例子,讓學生再舉兩例.而后請學生概括這類數列的一般形式,學生可能說形如 的數列都滿足既是等差又是等比數列,讓學生討論后得出結論:當 時,數列 既是等差又是等比數列,當 時,它只是等差數列,而不是等比數列.教師追問理由,引出對等比數列的認識:

2.對定義的認識(板書)

(1)等比數列的首項不為0;

(2)等比數列的每一項都不為0,即 ;

問題:一個數列各項均不為0是這個數列為等比數列的什么條件?

(3)公比不為0.

用數學式子表示等比數列的定義.

是等比數列 ①.在這個式子的寫法上可能會有一些爭議,如寫成 ,可讓學生研究行不行,好不好;接下來再問,能否改寫為 是等比數列 ?為什么不能?

式子 給出了數列第 項與第 項的數量關系,但能否確定一個等比數列?(不能)確定一個等比數列需要幾個條件?當給定了首項及公比后,如何求任意一項的值?所以要研究通項公式.

3.等比數列的通項公式(板書)

問題:用 和 表示第 項 .

①不完全歸納法

②疊乘法

,… , ,這 個式子相乘得 ,所以 .

(板書)(1)等比數列的通項公式

得出通項公式后,讓學生思考如何認識通項公式.

(板書)(2)對公式的認識

由學生來說,最后歸結:

①函數觀點;

②方程思想(因在等差數列中已有認識,此處再復習鞏固而已).

這里強調方程思想解決問題.方程中有四個量,知三求一,這是公式最簡單的應用,請學生舉例(應能編出四類問題).解題格式是什么?(不僅要會解題,還要注意規范表述的訓練)

如果增加一個條件,就多知道了一個量,這是公式的更高層次的應用,下節課再研究.同學可以試著編幾道題.

三、小結

1.本節課研究了等比數列的概念,得到了通項公式;

2.注意在研究內容與方法上要與等差數列相類比;

3.用方程的思想認識通項公式,并加以應用.

高中數學教案大全篇7

案例背景:

對數函數是函數中又一類重要的基本初等函數,它是在學生已經學過對數與常用對數,反函數以及指數函數的基礎上引入的.故是對上述知識的應用,也是對函數這一重要數學思想的進一步認識與理解.對數函數的概念,圖象與性質的學習使學生的知識體系更加完整,系統,同時又是對數和函數知識的拓展與延伸.它是解決有關自然科學領域中實際問題的重要工具,是學生今后學習對數方程,對數不等式的基礎.

案例敘述:

(一).創設情境

(師):前面的幾種函數都是以形式定義的方式給出的,今天我們將從反函數的角度介紹新的函數.

反函數的實質是研究兩個函數的關系,所以自然我們應從大家熟悉的函數出發,再研究其反函數.這個熟悉的函數就是指數函數.

(提問):什么是指數函數?指數函數存在反函數嗎?

(學生): 是指數函數,它是存在反函數的.

(師):求反函數的步驟

(由一個學生口答求反函數的過程):

由 得 .又 的值域為 ,

所求反函數為 .

(師):那么我們今天就是研究指數函數的反函數-----對數函數.

(二)新課

1.(板書) 定義:函數 的反函數 叫做對數函數.

(師):由于定義就是從反函數角度給出的,所以下面我們的研究就從這個角度出發.如從定義中你能了解對數函數的什么性質嗎?最初步的認識是什么?

(教師提示學生從反函數的三定與三反去認識,學生自主探究,合作交流)

(學生)對數函數的定義域為 ,對數函數的值域為 ,且底數 就是指數函數中的 ,故有著相同的限制條件 .

(在此基礎上,我們將一起來研究對數函數的圖像與性質.)

2.研究對數函數的圖像與性質

(提問)用什么方法來畫函數圖像?

(學生1)利用互為反函數的兩個函數圖像之間的關系,利用圖像變換法畫圖.

(學生2)用列表描點法也是可以的。

請學生從中上述方法中選出一種,大家最終確定用圖像變換法畫圖.

(師)由于指數函數的圖像按 和 分成兩種不同的類型,故對數函數的圖像也應以1為分界線分成兩種情況 和 ,并分別以 和 為例畫圖.

具體操作時,要求學生做到:

(1) 指數函數 和 的圖像要盡量準確(關鍵點的位置,圖像的變化趨勢等).

(2) 畫出直線 .

(3) 的圖像在翻折時先將特殊點 對稱點 找到,變化趨勢由靠近 軸對稱為逐漸靠近 軸,而 的圖像在翻折時可提示學生分兩段翻折,在 左側的先翻,然后再翻在 右側的部分.

學生在筆記本完成具體操作,教師在學生完成后將關鍵步驟在黑板上演示一遍,畫出

和 的圖像.(此時同底的指數函數和對數函數畫在同一坐標系內)如圖:

教師畫完圖后再利用電腦將 和 的圖像畫在同一坐標系內,如圖:

然后提出讓學生根據圖像說出對數函數的性質(要求從幾何與代數兩個角度說明)

3. 性質

(1) 定義域:

(2) 值域:

由以上兩條可說明圖像位于 軸的右側.

(3)圖像恒過(1,0)

(4) 奇偶性:既不是奇函數也不是偶函數,即它不關于原點對稱,也不關于 軸對稱.

(5) 單調性:與 有關.當 時,在 上是增函數.即圖像是上升的

當 時,在 上是減函數,即圖像是下降的.

之后可以追問學生有沒有最大值和最小值,當得到否定答案時,可以再問能否看待何時函數值為正?學生看著圖可以答出應有兩種情況:

當 時,有 ;當 時,有 .

學生回答后教師可指導學生巧記這個結論的方法:當底數與真數在1的同側時函數值為正,當底數與真數在1的兩側時,函數值為負,并把它當作第(6)條性質板書記下來.

最后教師在總結時,強調記住性質的關鍵在于要腦中有圖.且應將其性質與指數函數的性質對比記憶.(特別強調它們單調性的一致性)

對圖像和性質有了一定的了解后,一起來看看它們的應用.

(三).簡單應用

1. 研究相關函數的性質

例1. 求下列函數的定義域:

(1) (2) (3)

先由學生依次列出相應的不等式,其中特別要注意對數中真數和底數的條件限制.

2. 利用單調性比較大小

例2. 比較下列各組數的大小

(1) 與 ; (2) 與 ;

(3) 與 ; (4) 與 .

讓學生先說出各組數的特征即它們的底數相同,故可以構造對數函數利用單調性來比大小.最后讓學生以其中一組為例寫出詳細的比較過程.

三.拓展練習

練習:若 ,求 的取值范圍.

四.小結及作業

案例反思:

本節的教學重點是理解對數函數的定義,掌握對數函數的圖象性質.難點是利用指數函數的圖象和性質得到對數函數的圖象和性質.由于對數函數的概念是一個抽象的形式,學生不易理解,而且又是建立在指數與對數關系和反函數概念的基礎上,通過互為反函數的兩個函數的關系由已知函數研究未知函數的性質,這種方法是第一次使用,學生不適應,把握不住關鍵,因而在教學上采取教師逐步引導,學生自主合作的方式,從學生熟悉的指數問題出發,通過對指數函數的認識逐步轉化為對對數函數的認識,而且畫對數函數圖象時,既要考慮到對底數的分類討論而且對每一類問題也可以多選幾個不同的底,畫在同一個坐標系內,便于觀察圖象的特征,找出共性,歸納性質.

在教學中一定要讓學生動手做,動腦想,大膽猜,要以學生的研究為主,教師只是不斷地以反函數這條主線引導學生思考的方向.這樣既增強了學生的參與意識又教給他們思考問題的方法,獲取知識的途徑,使學生學有所思,思有所得,練有所獲,,從而提高學習興趣.

高中數學教案大全篇8

1。5 (1)充分條件與必要條件

一、教學目標設計

通過實例理解充分條件、必要條件的意義。

能夠在簡單的問題情境中判斷條件的充分性、必要性。

二、教學重點及難點

充分條件、必要條件的判斷;

充分條件、必要條件的判斷方法。

三、教學流程設計

四、教學過程設計

一、概念引入

早在戰國時期,《墨經》中就有這樣一段話有之則必然,無之則未必不然,是為大故無之則必不然,有之則未必然,是為小故。

今天,在日常生活中,常聽人說:這充分說明,沒有這個必要等,在數學中,也講充分和必要,這節課,我們就來學習教材第一章第五節充分條件與必要條件。

二、概念形成

1、 首先請同學們判斷下列命題的真假

(1)若兩三角形全等,則兩三角形的面積相等。

(2)若三角形有兩個內角相等,則這個三角形是等腰三角形。

(3)若某個整數能夠被4整除,則這個整數必是偶數。

(4) 若ab=0,則a=0。

解答:命題(2)、(3)、(4)為真。命題(4)為假;

2、請同學用推斷符號寫出上述命題。

解答:(1)兩三角形全等 兩三角形的面積相等。

(2) 三角形有兩個內角相等 三角形是等腰三角形。

(3) 某個整數能夠被4整除則這個整數必是偶數;

(4)ab=0 a=0。

3、充分條件與必要條件

繼續結合上述實例說明什么是充分條件、什么是必要條件。

若某個整數能夠被4整除則這個整數必是偶數中,我們稱某個整數能夠被4整除是這個整數必是偶數的充分條件,可以解釋為:只要某個整數能夠被4整除成立,這個整數必是偶數就一定成立;而稱這個整數必是偶數是某個整數能夠被4整除的必要條件,可以解釋成如果某個整數能夠被4整除 成立,就必須要這個整數必是偶數成立

充分條件:一般地,用、分別表示兩件事,如果這件事成立,可以推出這件事也成立,即,那么叫做的充分條件。[說明]:①可以解釋為:為了使成立,具備條件就足夠了。②可進一步解釋為:有它即行,無它也未必不行。③結合實例解釋為: x = 0 是 xy = 0 的充分條件,xy = 0不一定要 x = 0。)

必要條件:如果,那么叫做的必要條件。

[說明]:①可以解釋為若,則叫做的必要條件,是的充分條件。②無它不行,有它也不一定行③結合實例解釋為:如 xy = 0是 x = 0的必要條件,若xy0,則一定有 x若xy = 0也不一定有 x = 0。

回答上述問題(1)、(2)中的條件關系。

(1)中:兩三角形全等是兩三角形的面積相等的充分條件;兩三角形的面積相等是兩三角形全等的必要條件。

(2)中:三角形有兩個內角相等是三角形是等腰三角形的充分條件;三角形是等腰三角形是三角形有兩個內角相等的必要條件。

4、拓廣引申

把命題:若某個整數能夠被4整除,則這個整數必是偶數中的條件與結論分別記作與,那么,原命題與逆命題的真假同與之間有什么關系呢?

關系可分為四類:

(1)充分不必要條件,即,而

(2)必要不充分條件,即,而

(3)既充分又必要條件,即,又有

(4)既不充分也不必要條件,即,又有。

三、典型例題(概念運用)

例1:(1)已知四邊形ABCD是凸四邊形,那么AC=BD是四邊形ABCD是矩形的什么條件?為什么?(課本例題p22例4)

(2) 是 的什么條件。

(3)a+b是1,b什么條件。

解:(1)AC=BD是四邊形ABCD是矩形的必要不充分條件。

(2)充分不必要條件。

(3)必要不充分條件。

[說明]①如果把命題條件與結論分別記作與,則既要對進行判斷,又要對進行判斷。②要否定條件的充分性、必要性,則只需舉一反例即可。

例2:判斷下列電路圖中p與q的充要關系。其中p:開關閉合;q:

燈亮。(補充例題)

[說明]①圖中含有兩個開關時,p表示其中一個閉合,另一個情況不確定。②加強學科之間的橫向溝通,通過圖示,深化概念認識。

例3、探討下列生活中名言名句的充要關系。(補充例題)

(1)頭發長,見識短。 (2)驕兵必敗。

(3)有志者事竟成。 (4)春回大地,萬物復蘇。

(5)不入虎穴、焉得虎子 (6)四肢發達,頭腦簡單

[說明]通過本例,充分調動學生生活經驗,使得抽象概念形象化。從而激發學生學習熱情。

四、鞏固練習

1、課本P/22練習1。5(1)

2:填表(補充)

p q p是q的

什么條件 q是p的

什么條件

兩個角相等 兩個角是對頂角

內錯角相等 兩直線平行

四邊形對角線相等 四邊形是平行邊形

a=b ac=bc

[說明]通過練習,及時鞏固所學新知,反饋教學效果。

五、課堂小結

1、本節課主要研究的內容:

推斷符號,

充分條件的意義 命題充分性、必要性的判斷。

必要條件的意義

2、 充分條件、必要條件判別步驟:

① 認清條件和結論。

② 考察p q和q p的真假。

3、充分條件、必要條件判別技巧:

① 可先簡化命題。

② 否定一個命題只要舉出一個反例即可。

③ 將命題轉化為等價的逆否命題后再判斷。

六、課后作業

書面作業:課本P/24習題1。51,2,3。

五、教學設計說明

1、充分條件、必要條件以及下節課中充要條件與集合的概念一樣涉及到數學的各個分支,用推出關系的形式給出它的定義,對高一學生只要求知道它的意義,并能判斷簡單的充分條件與必要條件。

2、由于充要條件與命題的真假、命題的條件與結論的相互關系緊密相關,為此,教學時可以從判斷命題的真假入手,來分析命題的條件對于結論來說,是否充分,從而引入充分條件的概念,進而引入必要條件的概念。

3、教材中對充分條件、必要條件的定義沒有作過多的解釋說明,為了讓學生能理解定義的合理性,在教學過程中,教師可以從一些熟悉的命題的條件與結論之間的關系來認識充分條件的概念,從互為逆否命題的等價性來引出必要條件的概念。

4、由于這節課概念性、理論性較強,一般的教學使學生感到枯燥乏味,為此,激發學生的學習興趣是關鍵。教學中始終要注意以學生為主,結合相關學科及學生生活經驗讓學生在自我思考、相互交流中去給概念下定義,去體會概念的本質屬性。

高中數學教案大全篇9

教學目標

1.掌握等差數列前 項和的公式,并能運用公式解決簡單的問題.

(1)了解等差數列前 項和的定義,了解逆項相加的原理,理解等差數列前 項和公式推導的過程,記憶公式的兩種形式;

(2)用方程思想認識等差數列前 項和的公式,利用公式求 ;等差數列通項公式與前 項和的公式兩套公式涉及五個字母,已知其中三個量求另兩個值;

(3)會利用等差數列通項公式與前 項和的公式研究 的最值.

2.通過公式的推導和公式的運用,使學生體會從特殊到一般,再從一般到特殊的思維規律,初步形成認識問題,解決問題的一般思路和方法.

3.通過公式推導的過程教學,對學生進行思維靈活性與廣闊性的訓練,發展學生的思維水平.

4.通過公式的推導過程,展現數學中的對稱美;通過有關內容在實際生活中的應用,使學生再一次感受數學源于生活,又服務于生活的實用性,引導學生要善于觀察生活,從生活中發現問題,并數學地解決問題.

教學建議

(1)知識結構

本節內容是等差數列前 項和公式的推導和應用,首先通過具體的例子給出了求等差數列前 項和的思路,而后導出了一般的公式,并加以應用;再與等差數列通項公式組成方程組,共同運用,解決有關問題.

(2)重點、難點分析

教學重點是等差數列前 項和公式的推導和應用,難點是公式推導的思路.

推導過程的展示體現了人類解決問題的一般思路,即從特殊問題的解決中提煉一般方法,再試圖運用這一方法解決一般情況,所以推導公式的過程中所蘊含的思想方法比公式本身更為重要.等差數列前 項和公式有兩種形式,應根據條件選擇適當的形式進行計算;另外反用公式、變用公式、前 項和公式與通項公式的綜合運用體現了方程(組)思想.

高斯算法表現了大數學家的智慧和巧思,對一般學生來說有很大難度,但大多數學生都聽說過這個故事,所以難點在于一般等差數列求和的思路上.

(3)教法建議

①本節內容分為兩課時,一節為公式推導及簡單應用,一節側重于通項公式與前 項和公式綜合運用.

②前 項和公式的推導,建議由具體問題引入,使學生體會問題源于生活.

③強調從特殊到一般,再從一般到特殊的思考方法與研究方法.

④補充等差數列前 項和的值、最小值問題.

⑤用梯形面積公式記憶等差數列前 項和公式.

等差數列的前項和公式教學設計示例

教學目標

1.通過教學使學生理解等差數列的前 項和公式的推導過程,并能用公式解決簡單的問題.

2.通過公式推導的教學使學生進一步體會從特殊到一般,再從一般到特殊的思想方法,通過公式的運用體會方程的思想.

教學重點,難點

教學重點是等差數列的前 項和公式的推導和應用,難點是獲得推導公式的思路.

教學用具

實物投影儀,多媒體軟件,電腦.

教學方法

講授法.

教學過程

一.新課引入

提出問題(播放媒體資料):一個堆放鉛筆的V形架的最下面一層放一支鉛筆,往上每一層都比它下面一層多放一支,最上面一層放100支.這個V形架上共放著多少支鉛筆?(課件設計見課件展示)

問題就是(板書)“ ”

這是小學時就知道的一個故事,高斯的算法非常高明,回憶他是怎樣算的.(由一名學生回答,再由學生討論其高明之處)高斯算法的高明之處在于他發現這100個數可以分為50組,第一個數與最后一個數一組,第二個數與倒數第二個數一組,第三個數與倒數第三個數一組,…,每組數的和均相等,都等于101,50個101就等于5050了.高斯算法將加法問題轉化為乘法運算,迅速準確得到了結果.

我們希望求一般的等差數列的和,高斯算法對我們有何啟發?

二.講解新課

(板書)等差數列前 項和公式

1.公式推導(板書)

問題(幻燈片):設等差數列 的首項為 ,公差為 , 由學生討論,研究高斯算法對一般等差數列求和的指導意義.

思路一:運用基本量思想,將各項用 和 表示,得

,有以下等式

,問題是一共有多少個 ,似乎與 的奇偶有關.這個思路似乎進行不下去了.

思路二:

上面的等式其實就是 ,為回避個數問題,做一個改寫 , ,兩式左右分別相加,得

于是有: .這就是倒序相加法.

思路三:受思路二的啟發,重新調整思路一,可得 ,于是 .

于是得到了兩個公式(投影片): 和 .

2.公式記憶

用梯形面積公式記憶等差數列前 項和公式,這里對圖形進行了割、補兩種處理,對應著等差數列前 項和的兩個公式.

3.公式的應用

公式中含有四個量,運用方程的思想,知三求一.

例1.求和:(1) ;

(2) (結果用 表示)

解題的關鍵是數清項數,小結數項數的方法.

例2.等差數列 中前多少項的和是9900?

本題實質是反用公式,解一個關于 的一元二次函數,注意得到的項數 必須是正整數.

三.小結

1.推導等差數列前 項和公式的思路;

2.公式的應用中的數學思想.

四.板書設計

高中數學教案大全篇10

一、教材

《直線與圓的位置關系》是高中人教版必修2第四章第二節的內容,直線和圓的位置關系是本章的重點內容之一。從知識體系上看,它既是點與圓的位置關系的延續與提高,又是學習切線的判定定理、圓與圓的位置關系的基礎。從數學思想方法層面上看它運用運動變化的觀點揭示了知識的發生過程以及相關知識間的內在聯系,滲透了數形結合、分類討論、類比、化歸等數學思想方法,有助于提高學生的思維品質。

二、學情

學生初中已經接觸過直線與圓相交、相切、相離的定義和判定;且在上節的學習過程中掌握了點的坐標、直線的方程、圓的方程以及點到直線的距離公式;掌握利用方程組的方法來求直線的交點;具有用坐標法研究點與圓的位置關系的基礎;具有一定的數形結合解題思想的基礎。

三、教學目標

(一)知識與技能目標

能夠準確用圖形表示出直線與圓的三種位置關系;可以利用聯立方程的方法和求點到直線的距離的方法簡單判斷出直線與圓的關系。

(二)過程與方法目標

經歷操作、觀察、探索、總結直線與圓的位置關系的判斷方法,從而鍛煉觀察、比較、概括的邏輯思維能力。

(三)情感態度價值觀目標

激發求知欲和學習興趣,鍛煉積極探索、發現新知識、總結規律的能力,解題時養成歸納總結的良好習慣。

四、教學重難點

(一)重點

用解析法研究直線與圓的位置關系。

(二)難點

體會用解析法解決問題的數學思想。

五、教學方法

根據本節課教材內容的特點,為了更直觀、形象地突出重點,突破難點,借助信息技術工具,以幾何畫板為平臺,通過圖形的動態演示,變抽象為直觀,為學生的數學探究與數學思維提供支持.在教學中采用小組合作學習的方式,這樣可以為不同認知基礎的學生提供學習機會,同時有利于發揮各層次學生的作用,教師始終堅持啟發式教學原則,設計一系列問題串,以引導學生的數學思維活動。

高中數學教案大全篇11

一、教學目標:

掌握向量的概念、坐標表示、運算性質,做到融會貫通,能應用向量的有關性質解決諸如平面幾何、解析幾何等的問題。

二、教學重點:

向量的性質及相關知識的綜合應用。

三、教學過程:

(一)主要知識:

掌握向量的概念、坐標表示、運算性質,做到融會貫通,能應用向量的有關性質解決諸如平面幾何、解析幾何等的問題。

(二)例題分析:略

四、小結:

1、進一步熟練有關向量的運算和證明;能運用解三角形的知識解決有關應用問題,

2、滲透數學建模的思想,切實培養分析和解決問題的能力。

高中數學教案大全篇12

課題:

人教版全日制普通高級中學教科書數學第一冊(上)《2.7對數》

教材分析:

本節內容主要學習對數的概念及其對數式與指數式的互化。它屬于函數領域的知識。而對數的概念是對數函數部分教學中的核心概念之一,而函數的思想方法貫穿在高中數學教學的始終。通過對數的學習,可以解決數學中知道底數和冪值求指數的問題,以及對數函數的相關問題。

學情分析:

在ab=N(a>0,a≠1)中,知道底數和指數可以求冪值,那么知道底數和冪值如何求求指數,從學生認知的角度自然就產生了這樣的需要。因此,在前面學習指數的基礎上學習對數的概念是水到渠成的事。

教學目標:

(一)教學知識點:

1.對數的概念。

2.對數式與指數式的互化。

(二)能力目標:

1.理解對數的概念。

2.能夠進行對數式與指數式的互化。

(三)德育滲透目標:

1.認識事物之間的相互聯系與相互轉化,

2.用聯系的觀點看問題。

教學重點與難點:

重點是對數定義,難點是對數概念的理解。

高中數學教案大全篇13

一、單元教學內容

(1)算法的基本概念

(2)算法的基本結構:順序、條件、循環結構

(3)算法的基本語句:輸入、輸出、賦值、條件、循環語句

二、單元教學內容分析

算法是數學及其應用的重要組成部分,是計算科學的重要基礎。隨著現代信息技術飛速發展,算法在科學技術、社會發展中發揮著越來越大的作用,并日益融入社會生活的許多方面,算法思想已經成為現代人應具備的一種數學素養。需要特別指出的是,中國古代數學中蘊涵了豐富的算法思想。在本模塊中,學生將在中學教育階段初步感受算法思想的基礎上,結合對具體數學實例的分析,體驗程序框圖在解決問題中的作用;通過模仿、操作、探索,學習設計程序框圖表達解決問題的過程;體會算法的基本思想以及算法的重要性和有效性,發展有條理的思考與表達的能力,提高邏輯思維能力。

三、單元教學課時安排:

1、算法的基本概念3課時

2、程序框圖與算法的基本結構5課時

3、算法的基本語句2課時

四、單元教學目標分析

1、通過對解決具體問題過程與步驟的分析體會算法的思想,了解算法的含義

2、通過模仿、操作、探索,經歷通過設計程序框圖表達解決問題的過程。在具體問題的解決過程中理解程序框圖的三種基本邏輯結構:順序、條件、循環結構。

3、經歷將具體問題的程序框圖轉化為程序語句的過程,理解幾種基本算法語句:輸入、輸出、斌值、條件、循環語句,進一步體會算法的基本思想。

4、通過閱讀中國古代數學中的算法案例,體會中國古代數學對世界數學發展的貢獻。

五、單元教學重點與難點分析

1、重點

(1)理解算法的含義

(2)掌握算法的基本結構

(3)會用算法語句解決簡單的實際問題

2、難點

(1)程序框圖

(2)變量與賦值

(3)循環結構

(4)算法設計

六、單元總體教學方法

本章教學采用啟發式教學,輔以觀察法、發現法、練習法、講解法。采用這些方法的原因是學生的邏輯能力不是很強,只能通過對實例的認真領會及一定的練習才能掌握本節知識。

七、單元展開方式與特點

1、展開方式

自然語言→程序框圖→算法語句

2、特點

(1)螺旋上升分層遞進

(2)整合滲透前呼后應

(3)三線合一橫向貫通

(4)彈性處理多樣選擇

八、單元教學過程分析

1.算法基本概念教學過程分析

對生活中的實際問題通過對解決具體問題過程與步驟的分析(喝茶,如二元一次方程組求解問題),體會算法的思想,了解算法的含義,能用自然語言描述算法。

2.算法的流程圖教學過程分析

對生活中的實際問題通過模仿、操作、探索,經歷通過設計流程圖表達解決問題的過程,了解算法和程序語言的區別;在具體問題的解決過程中,理解流程圖的三種基本邏輯結構:順序、條件分支、循環,會用流程圖表示算法。

3.基本算法語句教學過程分析

經歷將具體生活中問題的流程圖轉化為程序語言的過程,理解表示的幾種基本算法語句:賦值語句、輸入語句、輸出語句、條件語句、循環語句,進一步體會算法的基本思想。能用自然語言、流程圖和基本算法語句表達算法,

4.通過閱讀中國古代數學中的算法案例,體會中國古代數學對世界數學發展的貢獻。

九、單元評價設想

1.重視對學生數學學習過程的評價

關注學生在數學語言的學習過程中,是否對用集合語言描述數學和現實生活中的問題充滿興趣;在學習過程中,能否體會集合語言準確、簡潔的特征;是否能積極、主動地發展自己運用數學語言進行交流的能力。

2.正確評價學生的數學基礎知識和基本技能

關注學生在本章(節)及今后學習中,讓學生集中學習算法的初步知識,主要包括算法的基本結構、基本語句、基本思想等。算法思想將貫穿高中數學課程的相關部分,在其他相關部分還將進一步學習算法

81967 主站蜘蛛池模板: 甘孜| 通州市| 信阳市| 巴中市| 和政县| 齐河县| 二连浩特市| 四子王旗| 南乐县| 贡嘎县| 巨鹿县| 会同县| 渝中区| 贵南县| 高雄市| 乌兰浩特市| 宣恩县| 宁南县| 苍溪县| 万宁市| 宾阳县| 安陆市| 萍乡市| 新巴尔虎右旗| 禹州市| 包头市| 广灵县| 尉犁县| 溆浦县| 嫩江县| 施秉县| 介休市| 潢川县| 买车| 建湖县| 合江县| 大城县| 泰安市| 大埔县| 施甸县| 高陵县|